感应式电力传输系统的控制:比较

Achintha De Alwis, Zachary Harris, D. Thrimawithana, U. Madawala
{"title":"感应式电力传输系统的控制:比较","authors":"Achintha De Alwis, Zachary Harris, D. Thrimawithana, U. Madawala","doi":"10.1109/ICIT.2014.6894895","DOIUrl":null,"url":null,"abstract":"Inductive Power Transfer (IPT) is a technique used for contactless power transfer from one system to another across a large air gap. The technology had been proposed for Electric Vehicle (EV) charging applications, and over the years the power transfer capability between the loosely coupled systems has improved. In this paper, the two most commonly used methodologies for unidirectional and bidirectional control of IPT systems are compared. Simulation models for each system are developed accounting for their behavior and sensitivity to variations in circuit parameters. The validity of these models is verified and the efficiency of each system is investigated using a 1.4 kW prototype systems. This comprehensive evaluation is expected to be useful when making a decision between control schemes for EV charging application.","PeriodicalId":240337,"journal":{"name":"2014 IEEE International Conference on Industrial Technology (ICIT)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Control of Inductive Power Transfer systems: A comparison\",\"authors\":\"Achintha De Alwis, Zachary Harris, D. Thrimawithana, U. Madawala\",\"doi\":\"10.1109/ICIT.2014.6894895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inductive Power Transfer (IPT) is a technique used for contactless power transfer from one system to another across a large air gap. The technology had been proposed for Electric Vehicle (EV) charging applications, and over the years the power transfer capability between the loosely coupled systems has improved. In this paper, the two most commonly used methodologies for unidirectional and bidirectional control of IPT systems are compared. Simulation models for each system are developed accounting for their behavior and sensitivity to variations in circuit parameters. The validity of these models is verified and the efficiency of each system is investigated using a 1.4 kW prototype systems. This comprehensive evaluation is expected to be useful when making a decision between control schemes for EV charging application.\",\"PeriodicalId\":240337,\"journal\":{\"name\":\"2014 IEEE International Conference on Industrial Technology (ICIT)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Industrial Technology (ICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2014.6894895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2014.6894895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

感应功率传输(IPT)是一种用于通过大气隙从一个系统到另一个系统的非接触式功率传输技术。该技术已被提出用于电动汽车(EV)充电应用,多年来,松散耦合系统之间的功率传输能力得到了改善。本文比较了IPT系统的两种最常用的单向和双向控制方法。每个系统的仿真模型都考虑了它们的行为和对电路参数变化的敏感性。验证了这些模型的有效性,并使用1.4 kW的原型系统对每个系统的效率进行了研究。该综合评价对电动汽车充电控制方案的选择具有一定的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Control of Inductive Power Transfer systems: A comparison
Inductive Power Transfer (IPT) is a technique used for contactless power transfer from one system to another across a large air gap. The technology had been proposed for Electric Vehicle (EV) charging applications, and over the years the power transfer capability between the loosely coupled systems has improved. In this paper, the two most commonly used methodologies for unidirectional and bidirectional control of IPT systems are compared. Simulation models for each system are developed accounting for their behavior and sensitivity to variations in circuit parameters. The validity of these models is verified and the efficiency of each system is investigated using a 1.4 kW prototype systems. This comprehensive evaluation is expected to be useful when making a decision between control schemes for EV charging application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Line tracking control of a two-wheel balancing mobile robot: Experimental studies Ultra-small transformer using insulated hybrid structure for AC adapters of smart devices Robust voltage regulation of DC-DC PWM based buck-boost converter The best practices of engineering regionalization Online identification and tuning method of static & dynamic inductance of IPMSM for fine position sensorless control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1