用静态代码度量预测Android应用安全和隐私风险

A. Rahman, Priysha Pradhan, Asif Partho, L. Williams
{"title":"用静态代码度量预测Android应用安全和隐私风险","authors":"A. Rahman, Priysha Pradhan, Asif Partho, L. Williams","doi":"10.1109/MOBILESoft.2017.14","DOIUrl":null,"url":null,"abstract":"Android applications pose security and privacy risks for end-users. These risks are often quantified by performing dynamic analysis and permission analysis of the Android applications after release. Prediction of security and privacy risks associated with Android applications at early stages of application development, e.g. when the developer (s) are writing the code of the application, might help Android application developers in releasing applications to end-users that have less security and privacy risk. The goal of this paper is to aid Android application developers in assessing the security and privacy risk associated with Android applications by using static code metrics as predictors. In our paper, we consider security and privacy risk of Android application as how susceptible the application is to leaking private information of end-users and to releasing vulnerabilities. We investigate how effectively static code metrics that are extracted from the source code of Android applications, can be used to predict security and privacy risk of Android applications. We collected 21 static code metrics of 1,407 Android applications, and use the collected static code metrics to predict security and privacy risk of the applications. As the oracle of security and privacy risk, we used Androrisk, a tool that quantifies the amount of security and privacy risk of an Android application using analysis of Android permissions and dynamic analysis. To accomplish our goal, we used statistical learners such as, radial-based support vector machine (r-SVM). For r-SVM, we observe a precision of 0.83. Findings from our paper suggest that with proper selection of static code metrics, r-SVM can be used effectively to predict security and privacy risk of Android applications.","PeriodicalId":281934,"journal":{"name":"2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Predicting Android Application Security and Privacy Risk with Static Code Metrics\",\"authors\":\"A. Rahman, Priysha Pradhan, Asif Partho, L. Williams\",\"doi\":\"10.1109/MOBILESoft.2017.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Android applications pose security and privacy risks for end-users. These risks are often quantified by performing dynamic analysis and permission analysis of the Android applications after release. Prediction of security and privacy risks associated with Android applications at early stages of application development, e.g. when the developer (s) are writing the code of the application, might help Android application developers in releasing applications to end-users that have less security and privacy risk. The goal of this paper is to aid Android application developers in assessing the security and privacy risk associated with Android applications by using static code metrics as predictors. In our paper, we consider security and privacy risk of Android application as how susceptible the application is to leaking private information of end-users and to releasing vulnerabilities. We investigate how effectively static code metrics that are extracted from the source code of Android applications, can be used to predict security and privacy risk of Android applications. We collected 21 static code metrics of 1,407 Android applications, and use the collected static code metrics to predict security and privacy risk of the applications. As the oracle of security and privacy risk, we used Androrisk, a tool that quantifies the amount of security and privacy risk of an Android application using analysis of Android permissions and dynamic analysis. To accomplish our goal, we used statistical learners such as, radial-based support vector machine (r-SVM). For r-SVM, we observe a precision of 0.83. Findings from our paper suggest that with proper selection of static code metrics, r-SVM can be used effectively to predict security and privacy risk of Android applications.\",\"PeriodicalId\":281934,\"journal\":{\"name\":\"2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MOBILESoft.2017.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOBILESoft.2017.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

Android应用程序会给终端用户带来安全和隐私风险。这些风险通常通过在Android应用发布后执行动态分析和权限分析来量化。在应用程序开发的早期阶段(例如,当开发人员编写应用程序代码时)预测与Android应用程序相关的安全和隐私风险,可能有助于Android应用程序开发人员向最终用户发布安全性和隐私风险较低的应用程序。本文的目标是通过使用静态代码度量作为预测器,帮助Android应用程序开发人员评估与Android应用程序相关的安全和隐私风险。在本文中,我们将Android应用程序的安全和隐私风险视为应用程序泄露最终用户隐私信息和发布漏洞的易感程度。我们研究了从Android应用程序源代码中提取的静态代码指标如何有效地用于预测Android应用程序的安全和隐私风险。我们收集了1407个Android应用程序的21个静态代码指标,并使用收集到的静态代码指标来预测应用程序的安全和隐私风险。作为安全与隐私风险的预言者,我们使用了andrisisk,这是一个通过分析Android权限和动态分析来量化Android应用程序的安全和隐私风险的工具。为了实现我们的目标,我们使用了统计学习器,如基于径向的支持向量机(r-SVM)。对于r-SVM,我们观察到精度为0.83。本文的研究结果表明,通过适当选择静态代码度量,r-SVM可以有效地用于预测Android应用程序的安全和隐私风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Android Application Security and Privacy Risk with Static Code Metrics
Android applications pose security and privacy risks for end-users. These risks are often quantified by performing dynamic analysis and permission analysis of the Android applications after release. Prediction of security and privacy risks associated with Android applications at early stages of application development, e.g. when the developer (s) are writing the code of the application, might help Android application developers in releasing applications to end-users that have less security and privacy risk. The goal of this paper is to aid Android application developers in assessing the security and privacy risk associated with Android applications by using static code metrics as predictors. In our paper, we consider security and privacy risk of Android application as how susceptible the application is to leaking private information of end-users and to releasing vulnerabilities. We investigate how effectively static code metrics that are extracted from the source code of Android applications, can be used to predict security and privacy risk of Android applications. We collected 21 static code metrics of 1,407 Android applications, and use the collected static code metrics to predict security and privacy risk of the applications. As the oracle of security and privacy risk, we used Androrisk, a tool that quantifies the amount of security and privacy risk of an Android application using analysis of Android permissions and dynamic analysis. To accomplish our goal, we used statistical learners such as, radial-based support vector machine (r-SVM). For r-SVM, we observe a precision of 0.83. Findings from our paper suggest that with proper selection of static code metrics, r-SVM can be used effectively to predict security and privacy risk of Android applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Same App, Different App Stores: A Comparative Study Predicting Android Application Security and Privacy Risk with Static Code Metrics A Set of Metrics for the Effort Estimation of Mobile Apps Assessing the Impact of Service Workers on the Energy Efficiency of Progressive Web Apps Towards Mobile Twin Peaks for App Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1