早期软件缺陷预测:将软件工作数据右移到缺陷曲线中

K. Okumoto
{"title":"早期软件缺陷预测:将软件工作数据右移到缺陷曲线中","authors":"K. Okumoto","doi":"10.1109/ISSREW55968.2022.00037","DOIUrl":null,"url":null,"abstract":"Predicting the number of defects in software at release is a critical need for quality managers to evaluate the readiness to deliver high-quality software. Even though this is a well-studied subject, it continues to be challenging in large-scale projects. This is particularly so during early stages of the development process when no defect data is available. This paper proposes a novel approach for defect prediction in early stages of development. It utilises a software development and testing plan, and also learns from previous releases of the same project to predict defects. By producing key quality metrics such as percentage residual defects and percentage open defects at delivery, we enable decisions regarding the readiness of a software product for delivery. Over several years, the approach has been successfully applied to large-scale software products, which has helped to evaluate the stability and accuracy of defects predicted at delivery over time.","PeriodicalId":178302,"journal":{"name":"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Early Software Defect Prediction: Right-Shifting Software Effort Data into a Defect Curve\",\"authors\":\"K. Okumoto\",\"doi\":\"10.1109/ISSREW55968.2022.00037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting the number of defects in software at release is a critical need for quality managers to evaluate the readiness to deliver high-quality software. Even though this is a well-studied subject, it continues to be challenging in large-scale projects. This is particularly so during early stages of the development process when no defect data is available. This paper proposes a novel approach for defect prediction in early stages of development. It utilises a software development and testing plan, and also learns from previous releases of the same project to predict defects. By producing key quality metrics such as percentage residual defects and percentage open defects at delivery, we enable decisions regarding the readiness of a software product for delivery. Over several years, the approach has been successfully applied to large-scale software products, which has helped to evaluate the stability and accuracy of defects predicted at delivery over time.\",\"PeriodicalId\":178302,\"journal\":{\"name\":\"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSREW55968.2022.00037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW55968.2022.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在发布时预测软件中的缺陷数量是质量管理人员评估交付高质量软件的准备情况的关键需求。尽管这是一个研究得很好的课题,但在大型项目中仍然具有挑战性。这在开发过程的早期阶段尤其如此,因为没有可用的缺陷数据。本文提出了一种在开发初期进行缺陷预测的新方法。它利用软件开发和测试计划,并从相同项目的先前版本中学习以预测缺陷。通过产生关键的质量度量,例如交付时剩余缺陷的百分比和开放缺陷的百分比,我们可以决定软件产品的交付准备情况。在过去的几年中,该方法已经成功地应用于大规模的软件产品,它有助于评估在交付过程中预测的缺陷的稳定性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Early Software Defect Prediction: Right-Shifting Software Effort Data into a Defect Curve
Predicting the number of defects in software at release is a critical need for quality managers to evaluate the readiness to deliver high-quality software. Even though this is a well-studied subject, it continues to be challenging in large-scale projects. This is particularly so during early stages of the development process when no defect data is available. This paper proposes a novel approach for defect prediction in early stages of development. It utilises a software development and testing plan, and also learns from previous releases of the same project to predict defects. By producing key quality metrics such as percentage residual defects and percentage open defects at delivery, we enable decisions regarding the readiness of a software product for delivery. Over several years, the approach has been successfully applied to large-scale software products, which has helped to evaluate the stability and accuracy of defects predicted at delivery over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Complexity Metrics with Hotspot Analysis to Support Software Sustainability Evaluating Human Locomotion Safety in Mobile Robots Populated Environments Performance Bottleneck Analysis of Drone Computation Offloading to a Shared Fog Node Early Software Defect Prediction: Right-Shifting Software Effort Data into a Defect Curve A Survey on Autonomous Driving System Simulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1