多目标进化算法与梯度算法的融合

Xiaolin Hu, Zhangcan Huang, Zhongfan Wang
{"title":"多目标进化算法与梯度算法的融合","authors":"Xiaolin Hu, Zhangcan Huang, Zhongfan Wang","doi":"10.1109/CEC.2003.1299758","DOIUrl":null,"url":null,"abstract":"It is known from single-objective optimization that hybrid variants of local search algorithms and evolutionary algorithms can outperform their pure counterparts. This holds, in particular, in continuous search spaces and for differentiable fitness functions. The same should be true in multiobjective optimization. An efficient gradient-based local algorithm, sequential quadratic programming (SQP) is combined with two well-known multiobjective evolutionary algorithms, strength Pareto evolutionary algorithm (SPEA) and nondominated sorting genetic algorithm (NSGA-II) respectively, by means of a modified /spl epsiv/-constraint method. The resulting two hybrid algorithms demonstrate great success over two sets of well-chosen functions regarding the convergence rate. In addition, from the simulation studies, the hybridization approach also enhances, at least does not ruin, the diversity of the solutions.","PeriodicalId":416243,"journal":{"name":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Hybridization of the multi-objective evolutionary algorithms and the gradient-based algorithms\",\"authors\":\"Xiaolin Hu, Zhangcan Huang, Zhongfan Wang\",\"doi\":\"10.1109/CEC.2003.1299758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known from single-objective optimization that hybrid variants of local search algorithms and evolutionary algorithms can outperform their pure counterparts. This holds, in particular, in continuous search spaces and for differentiable fitness functions. The same should be true in multiobjective optimization. An efficient gradient-based local algorithm, sequential quadratic programming (SQP) is combined with two well-known multiobjective evolutionary algorithms, strength Pareto evolutionary algorithm (SPEA) and nondominated sorting genetic algorithm (NSGA-II) respectively, by means of a modified /spl epsiv/-constraint method. The resulting two hybrid algorithms demonstrate great success over two sets of well-chosen functions regarding the convergence rate. In addition, from the simulation studies, the hybridization approach also enhances, at least does not ruin, the diversity of the solutions.\",\"PeriodicalId\":416243,\"journal\":{\"name\":\"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2003.1299758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2003.1299758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

从单目标优化可知,局部搜索算法和进化算法的混合变体可以优于纯变体。这尤其适用于连续搜索空间和可微适应度函数。在多目标优化中也是如此。采用一种改进的/spl epsiv/-约束方法,将基于梯度的高效局部算法序列二次规划(SQP)与两种著名的多目标进化算法——强度Pareto进化算法(SPEA)和非支配排序遗传算法(NSGA-II)相结合。所得到的两种混合算法在两组精心选择的函数上取得了巨大的成功。此外,从仿真研究来看,杂交方法也增强了,至少没有破坏解的多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybridization of the multi-objective evolutionary algorithms and the gradient-based algorithms
It is known from single-objective optimization that hybrid variants of local search algorithms and evolutionary algorithms can outperform their pure counterparts. This holds, in particular, in continuous search spaces and for differentiable fitness functions. The same should be true in multiobjective optimization. An efficient gradient-based local algorithm, sequential quadratic programming (SQP) is combined with two well-known multiobjective evolutionary algorithms, strength Pareto evolutionary algorithm (SPEA) and nondominated sorting genetic algorithm (NSGA-II) respectively, by means of a modified /spl epsiv/-constraint method. The resulting two hybrid algorithms demonstrate great success over two sets of well-chosen functions regarding the convergence rate. In addition, from the simulation studies, the hybridization approach also enhances, at least does not ruin, the diversity of the solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Searching oligo sets of human chromosome 12 using evolutionary strategies A nonlinear control system design based on HJB/HJI/FBI equations via differential genetic programming approach Particle swarm optimizers for Pareto optimization with enhanced archiving techniques Epigenetic programming: an approach of embedding epigenetic learning via modification of histones in genetic programming A new particle swarm optimiser for linearly constrained optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1