g波段微波辐射计标定目标的斜入射反射率

D. Houtz, D. Gu
{"title":"g波段微波辐射计标定目标的斜入射反射率","authors":"D. Houtz, D. Gu","doi":"10.1109/MICRORAD.2018.8430724","DOIUrl":null,"url":null,"abstract":"High emissivity temperature-controlled microwave blackbodies, or calibration targets, are often used as brightness temperature reference sources for radiometer calibration. Calibration targets are, in practice, often viewed from a range of angles due to the scanning nature of operational radiometers (e.g. a conical scanning instrument). Ideally, the calibration target has view-angle-independent emissivity of unity, but any deviation from ideal can bias the brightness temperature radiating from the target. Microwave emissivity is not a directly-measurable quantity, and instead must be inferred through measurements of reflectivity. We measure reflections from calibration targets by quantifying the magnitude of the standing wave formed by the target as it is linearly stepped through space at sub-wavelength increments. We present monostatic reflectivity results over a range of incidence angles for two types of calibration targets; a periodic pyramidal absorber array and a conical cavity blackbody. Measurements are presented at 165.5 GHz and 183.3 GHz, two channels of interest for environmental remote sensing. We find that the pyramidal array has higher reflectivity than the conical cavity at both frequencies and across the range of incidence angles. Additionally, we find that the pyramidal array has a larger range of reflectivity across the range of incidence angles. The reflectivity magnitude decreases as a function of incidence angle for both geometries, with local maxima at normal incidence except for the pyramidal array at 165.5 GHz. The considerable angular variation in reflectivity observed for the pyramidal array could potentially cause significant calibration bias as large as 0.12 K.","PeriodicalId":423162,"journal":{"name":"2018 IEEE 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oblique Incidence Reflectivity of Microwave Radiometer Calibration Targets in G-Band\",\"authors\":\"D. Houtz, D. Gu\",\"doi\":\"10.1109/MICRORAD.2018.8430724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High emissivity temperature-controlled microwave blackbodies, or calibration targets, are often used as brightness temperature reference sources for radiometer calibration. Calibration targets are, in practice, often viewed from a range of angles due to the scanning nature of operational radiometers (e.g. a conical scanning instrument). Ideally, the calibration target has view-angle-independent emissivity of unity, but any deviation from ideal can bias the brightness temperature radiating from the target. Microwave emissivity is not a directly-measurable quantity, and instead must be inferred through measurements of reflectivity. We measure reflections from calibration targets by quantifying the magnitude of the standing wave formed by the target as it is linearly stepped through space at sub-wavelength increments. We present monostatic reflectivity results over a range of incidence angles for two types of calibration targets; a periodic pyramidal absorber array and a conical cavity blackbody. Measurements are presented at 165.5 GHz and 183.3 GHz, two channels of interest for environmental remote sensing. We find that the pyramidal array has higher reflectivity than the conical cavity at both frequencies and across the range of incidence angles. Additionally, we find that the pyramidal array has a larger range of reflectivity across the range of incidence angles. The reflectivity magnitude decreases as a function of incidence angle for both geometries, with local maxima at normal incidence except for the pyramidal array at 165.5 GHz. The considerable angular variation in reflectivity observed for the pyramidal array could potentially cause significant calibration bias as large as 0.12 K.\",\"PeriodicalId\":423162,\"journal\":{\"name\":\"2018 IEEE 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICRORAD.2018.8430724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICRORAD.2018.8430724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高发射率温控微波黑体,或称定标目标,常被用作辐射计定标的亮度温度参考源。由于操作辐射计(如锥形扫描仪器)的扫描性质,在实践中,校准目标通常从一系列角度进行观察。理想情况下,标定目标具有与视角无关的单位发射率,但任何偏离理想都会使目标辐射的亮度温度产生偏差。微波发射率不是一个可直接测量的量,而必须通过反射率的测量来推断。我们测量来自校准目标的反射,通过量化由目标形成的驻波的大小,因为它是在亚波长增量线性步进空间。我们提出了单静态反射率结果在入射角范围内的两种类型的校准目标;周期锥体吸收器阵列和锥形腔黑体。测量在165.5 GHz和183.3 GHz,两个通道感兴趣的环境遥感。我们发现锥体阵列在两个频率和整个入射角范围内都比锥形腔具有更高的反射率。此外,我们发现锥体阵列在整个入射角范围内具有更大的反射率范围。两种几何形状的反射率随入射角的变化而减小,除锥体阵列在165.5 GHz处最大外,其他几何形状的反射率随入射角的变化而减小。在金字塔阵列中观察到的反射率的相当大的角度变化可能导致校准偏差高达0.12 K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oblique Incidence Reflectivity of Microwave Radiometer Calibration Targets in G-Band
High emissivity temperature-controlled microwave blackbodies, or calibration targets, are often used as brightness temperature reference sources for radiometer calibration. Calibration targets are, in practice, often viewed from a range of angles due to the scanning nature of operational radiometers (e.g. a conical scanning instrument). Ideally, the calibration target has view-angle-independent emissivity of unity, but any deviation from ideal can bias the brightness temperature radiating from the target. Microwave emissivity is not a directly-measurable quantity, and instead must be inferred through measurements of reflectivity. We measure reflections from calibration targets by quantifying the magnitude of the standing wave formed by the target as it is linearly stepped through space at sub-wavelength increments. We present monostatic reflectivity results over a range of incidence angles for two types of calibration targets; a periodic pyramidal absorber array and a conical cavity blackbody. Measurements are presented at 165.5 GHz and 183.3 GHz, two channels of interest for environmental remote sensing. We find that the pyramidal array has higher reflectivity than the conical cavity at both frequencies and across the range of incidence angles. Additionally, we find that the pyramidal array has a larger range of reflectivity across the range of incidence angles. The reflectivity magnitude decreases as a function of incidence angle for both geometries, with local maxima at normal incidence except for the pyramidal array at 165.5 GHz. The considerable angular variation in reflectivity observed for the pyramidal array could potentially cause significant calibration bias as large as 0.12 K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Calibration of RapidScat Brightness Temperature Generic Simulator for Conical Scanning Microwave Radiometers Ultra-High Performance C & L-Band Radiometer System for Future Spaceborne Ocean Missions The Radio Frequency and Calibration Assembly for the MetOp Second Generation MicroWave Imager (MWI) Data Processing and Experimental Performance of GIMS-II (Geostationary Interferometric Microwave Sounder-Second Generation) Demonstrator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1