基于对立的柯西突变快速差分进化

Yong Wu, Bin Zhao, Jinglei Guo
{"title":"基于对立的柯西突变快速差分进化","authors":"Yong Wu, Bin Zhao, Jinglei Guo","doi":"10.1109/GCIS.2012.91","DOIUrl":null,"url":null,"abstract":"Opposition-based Differential Evolution (ODE) has been proved to be an effective method to Differential Evolution (DE) in solving many optimization functions, and it's faster and more robust convergence than classical DE. In this paper, a fast ODE algorithm (FODE), using a local search method with Cauchy mutation is proposed. The simulation experiments are conducted on a comprehensive set of 10 complex benchmark functions. Compared with ODE, FODE is faster and more robust.","PeriodicalId":337629,"journal":{"name":"2012 Third Global Congress on Intelligent Systems","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Fast Opposition-Based Differential Evolution with Cauchy Mutation\",\"authors\":\"Yong Wu, Bin Zhao, Jinglei Guo\",\"doi\":\"10.1109/GCIS.2012.91\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Opposition-based Differential Evolution (ODE) has been proved to be an effective method to Differential Evolution (DE) in solving many optimization functions, and it's faster and more robust convergence than classical DE. In this paper, a fast ODE algorithm (FODE), using a local search method with Cauchy mutation is proposed. The simulation experiments are conducted on a comprehensive set of 10 complex benchmark functions. Compared with ODE, FODE is faster and more robust.\",\"PeriodicalId\":337629,\"journal\":{\"name\":\"2012 Third Global Congress on Intelligent Systems\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third Global Congress on Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCIS.2012.91\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2012.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于对立的差分进化算法(ODE)已被证明是差分进化算法求解许多优化函数的一种有效方法,它比经典的差分进化算法具有更快和更强的收敛性。本文提出了一种基于Cauchy突变的局部搜索方法的快速差分进化算法(FODE)。在10个复杂基准函数的综合集上进行了仿真实验。与ODE相比,FODE速度更快,鲁棒性更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Fast Opposition-Based Differential Evolution with Cauchy Mutation
Opposition-based Differential Evolution (ODE) has been proved to be an effective method to Differential Evolution (DE) in solving many optimization functions, and it's faster and more robust convergence than classical DE. In this paper, a fast ODE algorithm (FODE), using a local search method with Cauchy mutation is proposed. The simulation experiments are conducted on a comprehensive set of 10 complex benchmark functions. Compared with ODE, FODE is faster and more robust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Prediction Based on Different Meteorological Series The Design and Application for a Bio-inspired Nonlinear Intelligent Controller Problem-Specific Knowledge Based Heuristic Algorithm to Solve Satellite Broadcast Scheduling Problem Micro Pitch and Vary Speed for Extreme Value Search MPPT Method of DFIG Academic Relation Classification Rules Extraction with Correlation Feature Weight Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1