Xun Luo, R. Kenyon, T. Kline, H. C. Waldinger, D. Kamper
{"title":"脑卒中后手指伸指康复的增强现实训练环境","authors":"Xun Luo, R. Kenyon, T. Kline, H. C. Waldinger, D. Kamper","doi":"10.1109/ICORR.2005.1501112","DOIUrl":null,"url":null,"abstract":"Finger extension is an important hand function and is crucial for object exploration and manipulation. Unfortunately, the impairment of this motor function is common among stroke survivors. A training environment incorporating augmented reality (AR) in conjunction with assistive devices has been developed for the rehabilitation of finger extension. The environment consists of three components: the stroke survivor user element consisting of AR equipment/software and body-powered orthosis; the therapist element comprised of monitoring/control interface with visual, audio and force feedback; and the networking module which interconnects these two. In this paper we present the structure of this environment along with the results from a pilot case study with a stroke survivor.","PeriodicalId":131431,"journal":{"name":"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"An augmented reality training environment for post-stroke finger extension rehabilitation\",\"authors\":\"Xun Luo, R. Kenyon, T. Kline, H. C. Waldinger, D. Kamper\",\"doi\":\"10.1109/ICORR.2005.1501112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finger extension is an important hand function and is crucial for object exploration and manipulation. Unfortunately, the impairment of this motor function is common among stroke survivors. A training environment incorporating augmented reality (AR) in conjunction with assistive devices has been developed for the rehabilitation of finger extension. The environment consists of three components: the stroke survivor user element consisting of AR equipment/software and body-powered orthosis; the therapist element comprised of monitoring/control interface with visual, audio and force feedback; and the networking module which interconnects these two. In this paper we present the structure of this environment along with the results from a pilot case study with a stroke survivor.\",\"PeriodicalId\":131431,\"journal\":{\"name\":\"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR.2005.1501112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2005.1501112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An augmented reality training environment for post-stroke finger extension rehabilitation
Finger extension is an important hand function and is crucial for object exploration and manipulation. Unfortunately, the impairment of this motor function is common among stroke survivors. A training environment incorporating augmented reality (AR) in conjunction with assistive devices has been developed for the rehabilitation of finger extension. The environment consists of three components: the stroke survivor user element consisting of AR equipment/software and body-powered orthosis; the therapist element comprised of monitoring/control interface with visual, audio and force feedback; and the networking module which interconnects these two. In this paper we present the structure of this environment along with the results from a pilot case study with a stroke survivor.