空间疾病聚类检测算法的评价指标

Raphaella Carvalho Diniz, Pedro O. S. Vaz de Melo, R. Assunção
{"title":"空间疾病聚类检测算法的评价指标","authors":"Raphaella Carvalho Diniz, Pedro O. S. Vaz de Melo, R. Assunção","doi":"10.1145/3397536.3422251","DOIUrl":null,"url":null,"abstract":"We show that the usual evaluation metrics used in machine learning are not appropriate to measure the performance of spatial disease cluster detection algorithms. We demonstrate that the usual recall and precision metrics give a distorted evaluation of the algorithms. To solve this problem, we propose new metrics based on probability predictive rules. We evaluate the performance of the main spatial disease cluster algorithms with these new metrics. Our analysis and experiments offer insights into when the usual metrics are not appropriate and also show that our proposal is very effective at eliminating the bias from the usual metrics.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluating the Evaluation Metrics for Spatial Disease Cluster Detection Algorithms\",\"authors\":\"Raphaella Carvalho Diniz, Pedro O. S. Vaz de Melo, R. Assunção\",\"doi\":\"10.1145/3397536.3422251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the usual evaluation metrics used in machine learning are not appropriate to measure the performance of spatial disease cluster detection algorithms. We demonstrate that the usual recall and precision metrics give a distorted evaluation of the algorithms. To solve this problem, we propose new metrics based on probability predictive rules. We evaluate the performance of the main spatial disease cluster algorithms with these new metrics. Our analysis and experiments offer insights into when the usual metrics are not appropriate and also show that our proposal is very effective at eliminating the bias from the usual metrics.\",\"PeriodicalId\":233918,\"journal\":{\"name\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397536.3422251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究表明,机器学习中常用的评估指标不适用于衡量空间疾病聚类检测算法的性能。我们证明,通常的召回率和精度指标给出了一个扭曲的评价算法。为了解决这个问题,我们提出了基于概率预测规则的新度量。我们用这些新指标评估了主要的空间疾病聚类算法的性能。我们的分析和实验提供了通常指标不合适的见解,也表明我们的建议在消除通常指标的偏差方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating the Evaluation Metrics for Spatial Disease Cluster Detection Algorithms
We show that the usual evaluation metrics used in machine learning are not appropriate to measure the performance of spatial disease cluster detection algorithms. We demonstrate that the usual recall and precision metrics give a distorted evaluation of the algorithms. To solve this problem, we propose new metrics based on probability predictive rules. We evaluate the performance of the main spatial disease cluster algorithms with these new metrics. Our analysis and experiments offer insights into when the usual metrics are not appropriate and also show that our proposal is very effective at eliminating the bias from the usual metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poet Distributed Spatiotemporal Trajectory Query Processing in SQL A Time-Windowed Data Structure for Spatial Density Maps Distributed Spatial-Keyword kNN Monitoring for Location-aware Pub/Sub Platooning Graph for Safer Traffic Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1