基于稀疏表示的鲁棒补丁跟踪方法

Yi Li, Zhenyu He, Shuangyan Yi, Wei-Guo Yang
{"title":"基于稀疏表示的鲁棒补丁跟踪方法","authors":"Yi Li, Zhenyu He, Shuangyan Yi, Wei-Guo Yang","doi":"10.1109/SPAC.2014.6982667","DOIUrl":null,"url":null,"abstract":"Occlusion is one important problem in single object tracking. However, conventional methods are not capable of making full use of the spatial information because of occlusion, which may lead to the drift. In this paper, we propose a robust patches-based tracking method via sparse representation, namely RPSR, which selects the unoccluded patches, and adaptively assigns larger contribution factors to them. The experimental results on popular benchmark video sequences show that our RPSR method is effective and outperforms the state-of-the-art methods for single object tracking.","PeriodicalId":326246,"journal":{"name":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The robust patches-based tracking method via sparse representation\",\"authors\":\"Yi Li, Zhenyu He, Shuangyan Yi, Wei-Guo Yang\",\"doi\":\"10.1109/SPAC.2014.6982667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Occlusion is one important problem in single object tracking. However, conventional methods are not capable of making full use of the spatial information because of occlusion, which may lead to the drift. In this paper, we propose a robust patches-based tracking method via sparse representation, namely RPSR, which selects the unoccluded patches, and adaptively assigns larger contribution factors to them. The experimental results on popular benchmark video sequences show that our RPSR method is effective and outperforms the state-of-the-art methods for single object tracking.\",\"PeriodicalId\":326246,\"journal\":{\"name\":\"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC.2014.6982667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2014.6982667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

遮挡是单目标跟踪中的一个重要问题。然而,由于遮挡的存在,传统的方法无法充分利用空间信息,容易产生漂移。本文提出了一种基于稀疏表示的基于补丁的鲁棒跟踪方法,即RPSR,该方法选择未包含的补丁,并自适应地为其分配较大的贡献因子。在流行的基准视频序列上的实验结果表明,RPSR方法是有效的,并且优于目前最先进的单目标跟踪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The robust patches-based tracking method via sparse representation
Occlusion is one important problem in single object tracking. However, conventional methods are not capable of making full use of the spatial information because of occlusion, which may lead to the drift. In this paper, we propose a robust patches-based tracking method via sparse representation, namely RPSR, which selects the unoccluded patches, and adaptively assigns larger contribution factors to them. The experimental results on popular benchmark video sequences show that our RPSR method is effective and outperforms the state-of-the-art methods for single object tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new GPR image de-nosing method based on BEMD Design and implementation of one vertical video search engine Multi-scale sparse denoising model based on non-separable wavelet Dollar bill denomination recognition algorithm based on local texture feature Class specific dictionary learning for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1