R. Peterson, R. Englestad, G. Kulcinski, E. Lovell, J. Macfarlane, E. Mogahed, G. Moses, S. Rutledge, M. Sawan, I. Sviatoslavsky, G. Sviatoslavsky, L. Wittenberg
{"title":"LIBRA-LiTE,一个具有弹道离子传播的轻离子惯性约束聚变反应堆","authors":"R. Peterson, R. Englestad, G. Kulcinski, E. Lovell, J. Macfarlane, E. Mogahed, G. Moses, S. Rutledge, M. Sawan, I. Sviatoslavsky, G. Sviatoslavsky, L. Wittenberg","doi":"10.1109/FUSION.1991.218766","DOIUrl":null,"url":null,"abstract":"LIBRA-LiTE is a conceptual design for a 1300-MWe power plant using light ion inertial fusion. LIBRA-LiTE differs from the LIBRA design in its use of ballistically focused light ions to drive the target. Focusing magnets are positioned 2.05 m from the target, which, to mitigate neutron damage effects, has required a novel magnet design using liquid lithium as a conductor. A sacrificial film of liquid lithium protects the magnets, the target chamber side walls and bottom from the X-rays and debris released by the target microexplosion. The target neutrons deposit in a tritrium breeding blanket of liquid lithium confined to woven metal tubes on the sides and in a pool on the bottom. The top of the target chamber is a metallic dome removed far enough (16 m) from the target to be a lifetime component.<<ETX>>","PeriodicalId":318951,"journal":{"name":"[Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering","volume":"355 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"LIBRA-LiTE, a light ion inertial confinement fusion reactor with ballistic ion propagation\",\"authors\":\"R. Peterson, R. Englestad, G. Kulcinski, E. Lovell, J. Macfarlane, E. Mogahed, G. Moses, S. Rutledge, M. Sawan, I. Sviatoslavsky, G. Sviatoslavsky, L. Wittenberg\",\"doi\":\"10.1109/FUSION.1991.218766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LIBRA-LiTE is a conceptual design for a 1300-MWe power plant using light ion inertial fusion. LIBRA-LiTE differs from the LIBRA design in its use of ballistically focused light ions to drive the target. Focusing magnets are positioned 2.05 m from the target, which, to mitigate neutron damage effects, has required a novel magnet design using liquid lithium as a conductor. A sacrificial film of liquid lithium protects the magnets, the target chamber side walls and bottom from the X-rays and debris released by the target microexplosion. The target neutrons deposit in a tritrium breeding blanket of liquid lithium confined to woven metal tubes on the sides and in a pool on the bottom. The top of the target chamber is a metallic dome removed far enough (16 m) from the target to be a lifetime component.<<ETX>>\",\"PeriodicalId\":318951,\"journal\":{\"name\":\"[Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering\",\"volume\":\"355 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUSION.1991.218766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUSION.1991.218766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LIBRA-LiTE, a light ion inertial confinement fusion reactor with ballistic ion propagation
LIBRA-LiTE is a conceptual design for a 1300-MWe power plant using light ion inertial fusion. LIBRA-LiTE differs from the LIBRA design in its use of ballistically focused light ions to drive the target. Focusing magnets are positioned 2.05 m from the target, which, to mitigate neutron damage effects, has required a novel magnet design using liquid lithium as a conductor. A sacrificial film of liquid lithium protects the magnets, the target chamber side walls and bottom from the X-rays and debris released by the target microexplosion. The target neutrons deposit in a tritrium breeding blanket of liquid lithium confined to woven metal tubes on the sides and in a pool on the bottom. The top of the target chamber is a metallic dome removed far enough (16 m) from the target to be a lifetime component.<>