用时滞神经网络评价马来语-英语语码转换语音。

Anand Singh, Tien-Ping Tan
{"title":"用时滞神经网络评价马来语-英语语码转换语音。","authors":"Anand Singh, Tien-Ping Tan","doi":"10.21437/SLTU.2018-40","DOIUrl":null,"url":null,"abstract":"This paper presents a new baseline for Malay-English code-switched speech corpus; which is constructed using a factored form of time delay neural networks (TDNN-F), which reflected a significant relative percentage reduction of 28.07% in the word-error rate (WER), as compared to the Gaussian Mixture Model-Hidden Markov Model (GMM-HMM). The presented results also confirm the effectiveness of time delay neural networks (TDNNs) for code-switched speech.","PeriodicalId":190269,"journal":{"name":"Workshop on Spoken Language Technologies for Under-resourced Languages","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evaluating Code-Switched Malay-English Speech Using Time Delay Neural Networks.\",\"authors\":\"Anand Singh, Tien-Ping Tan\",\"doi\":\"10.21437/SLTU.2018-40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new baseline for Malay-English code-switched speech corpus; which is constructed using a factored form of time delay neural networks (TDNN-F), which reflected a significant relative percentage reduction of 28.07% in the word-error rate (WER), as compared to the Gaussian Mixture Model-Hidden Markov Model (GMM-HMM). The presented results also confirm the effectiveness of time delay neural networks (TDNNs) for code-switched speech.\",\"PeriodicalId\":190269,\"journal\":{\"name\":\"Workshop on Spoken Language Technologies for Under-resourced Languages\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Spoken Language Technologies for Under-resourced Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/SLTU.2018-40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Spoken Language Technologies for Under-resourced Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SLTU.2018-40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了马来语-英语语码转换语料库的新基线;该模型使用因子形式的时滞神经网络(TDNN-F)构建,与高斯混合模型-隐马尔可夫模型(GMM-HMM)相比,单词错误率(WER)显著降低了28.07%。本文的研究结果也证实了延时神经网络(TDNNs)在编码切换语音中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating Code-Switched Malay-English Speech Using Time Delay Neural Networks.
This paper presents a new baseline for Malay-English code-switched speech corpus; which is constructed using a factored form of time delay neural networks (TDNN-F), which reflected a significant relative percentage reduction of 28.07% in the word-error rate (WER), as compared to the Gaussian Mixture Model-Hidden Markov Model (GMM-HMM). The presented results also confirm the effectiveness of time delay neural networks (TDNNs) for code-switched speech.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Corpus of the Sorani Kurdish Folkloric Lyrics A Sentiment Analysis Dataset for Code-Mixed Malayalam-English Corpus Creation for Sentiment Analysis in Code-Mixed Tamil-English Text Text Normalization for Bangla, Khmer, Nepali, Javanese, Sinhala and Sundanese Text-to-Speech Systems Crowd-Sourced Speech Corpora for Javanese, Sundanese, Sinhala, Nepali, and Bangladeshi Bengali
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1