结合左、右手腕静脉图像进行个人验证

Mohamed Cheniti, Z. Akhtar, N. Boukezzoula, T. Falk
{"title":"结合左、右手腕静脉图像进行个人验证","authors":"Mohamed Cheniti, Z. Akhtar, N. Boukezzoula, T. Falk","doi":"10.1109/IPTA.2017.8310109","DOIUrl":null,"url":null,"abstract":"Multibiometric systems that fuse information from different sources are able to alleviate limitations of the unimodal biometric systems. In this paper, we propose a multibiometric framework to identify people using their left and right wrist vein patterns. The framework uses a fast and robust preprocessing and feature extraction method. A generic score level fusion approach is proposed to integrate the scores from left and right wrist vein patterns using Dubois and Parad triangular-norm (t-norm). Experiments on the publicly available PUT wrist vein dataset show that the proposed multibiometric framework outperforms the unimodal systems, their fusion using other t-norms techniques, and existing wrist vein recognition methods.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Combining left and right wrist vein images for personal verification\",\"authors\":\"Mohamed Cheniti, Z. Akhtar, N. Boukezzoula, T. Falk\",\"doi\":\"10.1109/IPTA.2017.8310109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multibiometric systems that fuse information from different sources are able to alleviate limitations of the unimodal biometric systems. In this paper, we propose a multibiometric framework to identify people using their left and right wrist vein patterns. The framework uses a fast and robust preprocessing and feature extraction method. A generic score level fusion approach is proposed to integrate the scores from left and right wrist vein patterns using Dubois and Parad triangular-norm (t-norm). Experiments on the publicly available PUT wrist vein dataset show that the proposed multibiometric framework outperforms the unimodal systems, their fusion using other t-norms techniques, and existing wrist vein recognition methods.\",\"PeriodicalId\":316356,\"journal\":{\"name\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2017.8310109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

融合不同来源信息的多生物识别系统能够缓解单峰生物识别系统的局限性。在本文中,我们提出了一个多生物识别框架来识别人们使用他们的左手腕和右手腕静脉模式。该框架采用快速、鲁棒的预处理和特征提取方法。提出了一种基于Dubois和Parad三角范数(t-范数)的通用评分水平融合方法来整合左右腕静脉模式的评分。在公开可用的PUT手腕静脉数据集上的实验表明,所提出的多生物识别框架优于单峰系统,使用其他t规范技术进行融合,以及现有的手腕静脉识别方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining left and right wrist vein images for personal verification
Multibiometric systems that fuse information from different sources are able to alleviate limitations of the unimodal biometric systems. In this paper, we propose a multibiometric framework to identify people using their left and right wrist vein patterns. The framework uses a fast and robust preprocessing and feature extraction method. A generic score level fusion approach is proposed to integrate the scores from left and right wrist vein patterns using Dubois and Parad triangular-norm (t-norm). Experiments on the publicly available PUT wrist vein dataset show that the proposed multibiometric framework outperforms the unimodal systems, their fusion using other t-norms techniques, and existing wrist vein recognition methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated quantification of retinal vessel morphometry in the UK biobank cohort Deep learning for automatic sale receipt understanding Illumination-robust multispectral demosaicing Completed local structure patterns on three orthogonal planes for dynamic texture recognition Single object tracking using offline trained deep regression networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1