基于前馈神经网络的低频数据外推

O. Ovcharenko, V. Kazei, D. Peter, X. Zhang, T. Alkhalifah
{"title":"基于前馈神经网络的低频数据外推","authors":"O. Ovcharenko, V. Kazei, D. Peter, X. Zhang, T. Alkhalifah","doi":"10.3997/2214-4609.201801231","DOIUrl":null,"url":null,"abstract":"Full-waveform inversion (FWI) benefits in many ways from having low-frequency data. However, those are rarely available due to acquisition limitations. Here, we explore the feasibility of frequency-bandwidth extrapolation using an Artificial Neural Network (ANN) approach. The ANN is trained to be a non-linear operator that maps high-frequency data for a single source and multiple receivers to low-frequency data. Assuming that the source is a point (delta function) in both time and space, we train the network on synthetic data generated using random velocity models. Extending our previous work, we apply the ANN to multiple collocated source-receiver acquisitions to predict 0.5~Hz data for a crop from the acoustic BP 2004 benchmark model. Prediction results, in general, resemble the reference ones but the prediction accuracy is barely sufficient to directly use extrapolated data in FWI. To demonstrate, we show regularized mono-frequency FWI on extrapolated data.","PeriodicalId":325587,"journal":{"name":"80th EAGE Conference and Exhibition 2018","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Low-Frequency Data Extrapolation Using a Feed-Forward ANN\",\"authors\":\"O. Ovcharenko, V. Kazei, D. Peter, X. Zhang, T. Alkhalifah\",\"doi\":\"10.3997/2214-4609.201801231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Full-waveform inversion (FWI) benefits in many ways from having low-frequency data. However, those are rarely available due to acquisition limitations. Here, we explore the feasibility of frequency-bandwidth extrapolation using an Artificial Neural Network (ANN) approach. The ANN is trained to be a non-linear operator that maps high-frequency data for a single source and multiple receivers to low-frequency data. Assuming that the source is a point (delta function) in both time and space, we train the network on synthetic data generated using random velocity models. Extending our previous work, we apply the ANN to multiple collocated source-receiver acquisitions to predict 0.5~Hz data for a crop from the acoustic BP 2004 benchmark model. Prediction results, in general, resemble the reference ones but the prediction accuracy is barely sufficient to directly use extrapolated data in FWI. To demonstrate, we show regularized mono-frequency FWI on extrapolated data.\",\"PeriodicalId\":325587,\"journal\":{\"name\":\"80th EAGE Conference and Exhibition 2018\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"80th EAGE Conference and Exhibition 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201801231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"80th EAGE Conference and Exhibition 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201801231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

全波形反演(FWI)在很多方面都得益于低频数据。然而,由于收购限制,这些设备很少可用。在这里,我们探讨了使用人工神经网络(ANN)方法进行频率-带宽外推的可行性。人工神经网络被训练成一个非线性算子,将单一来源和多个接收器的高频数据映射到低频数据。假设源在时间和空间上都是一个点(delta函数),我们使用随机速度模型生成的合成数据来训练网络。扩展我们之前的工作,我们将人工神经网络应用于多个并置的源接收机采集,以从声学BP 2004基准模型中预测作物的0.5~Hz数据。一般情况下,预测结果与参考结果相似,但预测精度不足以直接使用外推数据进行FWI预测。为了证明这一点,我们在外推数据上展示了正则化的单频FWI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-Frequency Data Extrapolation Using a Feed-Forward ANN
Full-waveform inversion (FWI) benefits in many ways from having low-frequency data. However, those are rarely available due to acquisition limitations. Here, we explore the feasibility of frequency-bandwidth extrapolation using an Artificial Neural Network (ANN) approach. The ANN is trained to be a non-linear operator that maps high-frequency data for a single source and multiple receivers to low-frequency data. Assuming that the source is a point (delta function) in both time and space, we train the network on synthetic data generated using random velocity models. Extending our previous work, we apply the ANN to multiple collocated source-receiver acquisitions to predict 0.5~Hz data for a crop from the acoustic BP 2004 benchmark model. Prediction results, in general, resemble the reference ones but the prediction accuracy is barely sufficient to directly use extrapolated data in FWI. To demonstrate, we show regularized mono-frequency FWI on extrapolated data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multivariate Constraints Time-Depth Conversion Method Based On Velocity Tomography and Application in Bohai K Oilfield Petroleum Exploration Prospect of the Area Longkou 7-6, Bohai Bay Basin, Offshore China Structure Preserving Regularization for Multitrace Sparse Deconvolution Private Equity Funding the Future of the North Sea? – Siccar Point Energy Case Study Dynamics and Evolution of Growth Faults - Implications on Stratigraphic Geometries and Facies Distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1