基于视觉词袋和深度特征的散装食品分类

Abdelmgeid A. Ali, Usama Mohammed, Rehab Nour
{"title":"基于视觉词袋和深度特征的散装食品分类","authors":"Abdelmgeid A. Ali, Usama Mohammed, Rehab Nour","doi":"10.21608/kjis.2021.198376","DOIUrl":null,"url":null,"abstract":"The goal of this research is to compare between the performance of the traditional machine learning classification algorithm using Bag of Visual Words (BoVW) method and off-the-shelf deep features extracted by VGG-19, and Inception-V3 models and trained SVMs using the extracted features. By comparing the AUC, sensitivity, and specificity of SVM with VGG19 and Inception-V3, we can conclude that off-the-shelf deep features has an important impact on food grains image","PeriodicalId":115907,"journal":{"name":"Kafrelsheikh Journal of Information Sciences","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Product Based Classification of Bulk Food Grains using Bag of Visual Words and Deep Features\",\"authors\":\"Abdelmgeid A. Ali, Usama Mohammed, Rehab Nour\",\"doi\":\"10.21608/kjis.2021.198376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this research is to compare between the performance of the traditional machine learning classification algorithm using Bag of Visual Words (BoVW) method and off-the-shelf deep features extracted by VGG-19, and Inception-V3 models and trained SVMs using the extracted features. By comparing the AUC, sensitivity, and specificity of SVM with VGG19 and Inception-V3, we can conclude that off-the-shelf deep features has an important impact on food grains image\",\"PeriodicalId\":115907,\"journal\":{\"name\":\"Kafrelsheikh Journal of Information Sciences\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kafrelsheikh Journal of Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/kjis.2021.198376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kafrelsheikh Journal of Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/kjis.2021.198376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是比较使用视觉词袋(BoVW)方法的传统机器学习分类算法与VGG-19提取的现成深度特征的性能,以及使用提取的特征的Inception-V3模型和训练的支持向量机的性能。通过比较SVM与VGG19和Inception-V3的AUC、灵敏度和特异性,我们可以得出现成的深度特征对粮食图像有重要影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Product Based Classification of Bulk Food Grains using Bag of Visual Words and Deep Features
The goal of this research is to compare between the performance of the traditional machine learning classification algorithm using Bag of Visual Words (BoVW) method and off-the-shelf deep features extracted by VGG-19, and Inception-V3 models and trained SVMs using the extracted features. By comparing the AUC, sensitivity, and specificity of SVM with VGG19 and Inception-V3, we can conclude that off-the-shelf deep features has an important impact on food grains image
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anemia Diagnosis And Prediction Based On Machine Learning Chronic Kidney Disease Classification Using ML Algorithms Cost-Efficient Method for Detecting and Mitigating DDOS Attacks in SDN Based Networks Decision Making in an Information System Via Pawlak’s Rough Approximation The classification of mushroom using ML
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1