J. Rantakokko, E. Emilsson, P. Stromback, J. Rydell
{"title":"基于场景的高精度个人定位系统评估","authors":"J. Rantakokko, E. Emilsson, P. Stromback, J. Rydell","doi":"10.1109/PLANS.2012.6236871","DOIUrl":null,"url":null,"abstract":"Foot-mounted inertial sensors combined with GPS-receivers, magnetometers, and barometric pressure sensors have shown great potential in providing high-accuracy positioning systems for first responder and military applications. Several factors, including the type of movement, surface, and the shape of the trajectory, can strongly influence the performance of foot-mounted inertial navigation systems. There is a need for realistic scenario-based evaluations as a complement to the controlled environment tests that have been published in the literature. In this work we evaluate the performance of a foot-mounted inertial navigation system using three-axis accelerometers, gyroscopes and magnetometers during realistic scenario-based measurements. The position accuracy is evaluated by using a camera-based reference system which positions itself towards visual markers placed at pre-surveyed positions, using a slightly modified version of the ARToolKitPlus software. Maximum position errors of 2.5 to 5.5 meters were obtained during four separate high-tempo building clearing operations that lasted approximately three and a half minutes each. Further improvements in accuracy, as well as improved robustness towards different movement patterns, can be achieved by implementing an adaptive stand-still detection algorithm.","PeriodicalId":282304,"journal":{"name":"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Scenario-based evaluations of high-accuracy personal positioning systems\",\"authors\":\"J. Rantakokko, E. Emilsson, P. Stromback, J. Rydell\",\"doi\":\"10.1109/PLANS.2012.6236871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Foot-mounted inertial sensors combined with GPS-receivers, magnetometers, and barometric pressure sensors have shown great potential in providing high-accuracy positioning systems for first responder and military applications. Several factors, including the type of movement, surface, and the shape of the trajectory, can strongly influence the performance of foot-mounted inertial navigation systems. There is a need for realistic scenario-based evaluations as a complement to the controlled environment tests that have been published in the literature. In this work we evaluate the performance of a foot-mounted inertial navigation system using three-axis accelerometers, gyroscopes and magnetometers during realistic scenario-based measurements. The position accuracy is evaluated by using a camera-based reference system which positions itself towards visual markers placed at pre-surveyed positions, using a slightly modified version of the ARToolKitPlus software. Maximum position errors of 2.5 to 5.5 meters were obtained during four separate high-tempo building clearing operations that lasted approximately three and a half minutes each. Further improvements in accuracy, as well as improved robustness towards different movement patterns, can be achieved by implementing an adaptive stand-still detection algorithm.\",\"PeriodicalId\":282304,\"journal\":{\"name\":\"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS.2012.6236871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2012.6236871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scenario-based evaluations of high-accuracy personal positioning systems
Foot-mounted inertial sensors combined with GPS-receivers, magnetometers, and barometric pressure sensors have shown great potential in providing high-accuracy positioning systems for first responder and military applications. Several factors, including the type of movement, surface, and the shape of the trajectory, can strongly influence the performance of foot-mounted inertial navigation systems. There is a need for realistic scenario-based evaluations as a complement to the controlled environment tests that have been published in the literature. In this work we evaluate the performance of a foot-mounted inertial navigation system using three-axis accelerometers, gyroscopes and magnetometers during realistic scenario-based measurements. The position accuracy is evaluated by using a camera-based reference system which positions itself towards visual markers placed at pre-surveyed positions, using a slightly modified version of the ARToolKitPlus software. Maximum position errors of 2.5 to 5.5 meters were obtained during four separate high-tempo building clearing operations that lasted approximately three and a half minutes each. Further improvements in accuracy, as well as improved robustness towards different movement patterns, can be achieved by implementing an adaptive stand-still detection algorithm.