一种高效的混合现实全频环境渲染方法

Fengquan Zhang, Yujie Zhao, Zhaowei Wang, T. Lei
{"title":"一种高效的混合现实全频环境渲染方法","authors":"Fengquan Zhang, Yujie Zhao, Zhaowei Wang, T. Lei","doi":"10.1109/CISP-BMEI.2016.7852736","DOIUrl":null,"url":null,"abstract":"Consistent illumination is an important research target in the augmented reality system. In this paper, an efficient illumination method is implemented to solve the consistent illumination problem for mixed reality application. We design and implement an all-frequency environment rendering methods based on wavelet transform, and proposed an accelerated rendering method on GPU. The environment rendering method consists of two steps, one is precomputation and the other real-time rendering. An improved shadow algorithm based on shadow map is propose, which can solve least area where light source view frustum should surround according to the relationship of view frustum in eye space and terrain. In the end, we develop a mixed reality system for aircraft design based on the research results of all the work above which realize the illumination and shadow effects on the virtual aircraft. It can be used to assess how the weather impact on the operating.","PeriodicalId":275095,"journal":{"name":"2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An efficient all-frequency environment rendering method for mixed reality\",\"authors\":\"Fengquan Zhang, Yujie Zhao, Zhaowei Wang, T. Lei\",\"doi\":\"10.1109/CISP-BMEI.2016.7852736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consistent illumination is an important research target in the augmented reality system. In this paper, an efficient illumination method is implemented to solve the consistent illumination problem for mixed reality application. We design and implement an all-frequency environment rendering methods based on wavelet transform, and proposed an accelerated rendering method on GPU. The environment rendering method consists of two steps, one is precomputation and the other real-time rendering. An improved shadow algorithm based on shadow map is propose, which can solve least area where light source view frustum should surround according to the relationship of view frustum in eye space and terrain. In the end, we develop a mixed reality system for aircraft design based on the research results of all the work above which realize the illumination and shadow effects on the virtual aircraft. It can be used to assess how the weather impact on the operating.\",\"PeriodicalId\":275095,\"journal\":{\"name\":\"2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI.2016.7852736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2016.7852736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

一致照明是增强现实系统中的一个重要研究目标。本文提出了一种有效的照明方法来解决混合现实应用中的一致性照明问题。设计并实现了一种基于小波变换的全频环境渲染方法,并提出了一种基于GPU的加速渲染方法。环境渲染方法分为预计算和实时渲染两步。提出了一种改进的基于阴影映射的阴影算法,根据视锥体在眼空间与地形的关系,求解光源视锥体应包围的最小区域。最后,在以上研究成果的基础上,我们开发了一个用于飞机设计的混合现实系统,实现了虚拟飞机的照明和阴影效果。它可以用来评估天气对操作的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An efficient all-frequency environment rendering method for mixed reality
Consistent illumination is an important research target in the augmented reality system. In this paper, an efficient illumination method is implemented to solve the consistent illumination problem for mixed reality application. We design and implement an all-frequency environment rendering methods based on wavelet transform, and proposed an accelerated rendering method on GPU. The environment rendering method consists of two steps, one is precomputation and the other real-time rendering. An improved shadow algorithm based on shadow map is propose, which can solve least area where light source view frustum should surround according to the relationship of view frustum in eye space and terrain. In the end, we develop a mixed reality system for aircraft design based on the research results of all the work above which realize the illumination and shadow effects on the virtual aircraft. It can be used to assess how the weather impact on the operating.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
D-admissible control of singular delta operator systems Performance comparison of two spread-spectrum-based wireless video transmission schemes Impact analysis on three-dimensional indoor location technology Formation of graphene oxide/graphene membrane on solid-state substrates via Langmuir-Blodgett self-assembly Design of a panorama parking system based on DM6437
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1