LSTM-FCN在多数据集上的对比分析

S. Akhtar, M. Ali Shah
{"title":"LSTM-FCN在多数据集上的对比分析","authors":"S. Akhtar, M. Ali Shah","doi":"10.1049/icp.2021.2411","DOIUrl":null,"url":null,"abstract":"Classification of time series data is a critical problem. With the growth of time series data, several algorithms have been proposed. The deep learning technique Long Short-Term Memory (LSTM) with Fully Convolutional Networks (FCN) is widely used for the classification of time series data. The use of LSTM-FCN to improve fully convolutional networks. Through attention mechanism visualisation of context, the vector is performed and enhances the results of time series classification. The aim of this research is to compare the results of LSTM-FCN output on a multiple dataset. The results show that the selected technique is more effective at classifying time series. Visualisation is given for the performance analysis of the LSTM-FCN technique on all datasets.","PeriodicalId":254750,"journal":{"name":"Competitive Advantage in the Digital Economy (CADE 2021)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of LSTM-FCN on Multiple Datasets\",\"authors\":\"S. Akhtar, M. Ali Shah\",\"doi\":\"10.1049/icp.2021.2411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification of time series data is a critical problem. With the growth of time series data, several algorithms have been proposed. The deep learning technique Long Short-Term Memory (LSTM) with Fully Convolutional Networks (FCN) is widely used for the classification of time series data. The use of LSTM-FCN to improve fully convolutional networks. Through attention mechanism visualisation of context, the vector is performed and enhances the results of time series classification. The aim of this research is to compare the results of LSTM-FCN output on a multiple dataset. The results show that the selected technique is more effective at classifying time series. Visualisation is given for the performance analysis of the LSTM-FCN technique on all datasets.\",\"PeriodicalId\":254750,\"journal\":{\"name\":\"Competitive Advantage in the Digital Economy (CADE 2021)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Competitive Advantage in the Digital Economy (CADE 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/icp.2021.2411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Competitive Advantage in the Digital Economy (CADE 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/icp.2021.2411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

时间序列数据的分类是一个关键问题。随着时间序列数据的增长,人们提出了几种算法。基于全卷积网络的长短期记忆(LSTM)深度学习技术被广泛应用于时间序列数据的分类。利用LSTM-FCN改进全卷积网络。通过对上下文的注意机制可视化,实现向量化,增强了时间序列分类的结果。本研究的目的是比较LSTM-FCN在多个数据集上的输出结果。结果表明,所选择的方法对时间序列的分类更有效。给出了LSTM-FCN技术在所有数据集上的性能分析的可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Analysis of LSTM-FCN on Multiple Datasets
Classification of time series data is a critical problem. With the growth of time series data, several algorithms have been proposed. The deep learning technique Long Short-Term Memory (LSTM) with Fully Convolutional Networks (FCN) is widely used for the classification of time series data. The use of LSTM-FCN to improve fully convolutional networks. Through attention mechanism visualisation of context, the vector is performed and enhances the results of time series classification. The aim of this research is to compare the results of LSTM-FCN output on a multiple dataset. The results show that the selected technique is more effective at classifying time series. Visualisation is given for the performance analysis of the LSTM-FCN technique on all datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Analysis of LSTM-FCN on Multiple Datasets 5G SECURITY THREATS AFFECTING DIGITAL ECONOMY AND THEIR COUNTERMEASURES PRIVACY PRESERVATION IN DIGITAL ECONOMY PLATFORMS PRIVACY-PRESERVING AUTHENTICATION SCHEME FOR VANETS IN DIGITAL ECONOMY INVESTIGATING THE IMPACT OF UNDERLYING HEALTH CONDITIONS ON PRIVACY CONCERNS OF IOT HEALTHCARE DEVICES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1