UniBO @ AMI:使用AlBERTo在Twitter帖子中识别厌女症和攻击性的多类方法

Arianna Muti, Alberto Barrón-Cedeño
{"title":"UniBO @ AMI:使用AlBERTo在Twitter帖子中识别厌女症和攻击性的多类方法","authors":"Arianna Muti, Alberto Barrón-Cedeño","doi":"10.4000/BOOKS.AACCADEMIA.6769","DOIUrl":null,"url":null,"abstract":"We describe our participation in the EVALITA 2020 (Basile et al., 2020) shared task on Automatic Misogyny Identification. We focus on task A —Misogyny and Aggressive Behaviour Identification— which aims at detecting whether a tweet in Italian is misogynous and, if so, whether it is aggressive. Rather than building two different models, one for misogyny and one for aggressiveness identification, we handle the problem as one single multi-label classification task, considering three classes: nonmisogynous, non-aggressive misogynous, and aggressive misogynous. Our threeclass supervised model, built on top of AlBERTo, obtains an overall F1 score of 0.7438 on the task test set (F1 = 0.8102 for the misogyny and F1 = 0.6774 for the aggressiveness task), which outperforms the top submitted model (F1 = 0.7406).1","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"UniBO @ AMI: A Multi-Class Approach to Misogyny and Aggressiveness Identification on Twitter Posts Using AlBERTo\",\"authors\":\"Arianna Muti, Alberto Barrón-Cedeño\",\"doi\":\"10.4000/BOOKS.AACCADEMIA.6769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe our participation in the EVALITA 2020 (Basile et al., 2020) shared task on Automatic Misogyny Identification. We focus on task A —Misogyny and Aggressive Behaviour Identification— which aims at detecting whether a tweet in Italian is misogynous and, if so, whether it is aggressive. Rather than building two different models, one for misogyny and one for aggressiveness identification, we handle the problem as one single multi-label classification task, considering three classes: nonmisogynous, non-aggressive misogynous, and aggressive misogynous. Our threeclass supervised model, built on top of AlBERTo, obtains an overall F1 score of 0.7438 on the task test set (F1 = 0.8102 for the misogyny and F1 = 0.6774 for the aggressiveness task), which outperforms the top submitted model (F1 = 0.7406).1\",\"PeriodicalId\":184564,\"journal\":{\"name\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/BOOKS.AACCADEMIA.6769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.6769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们描述了我们参与EVALITA 2020 (Basile et al., 2020)关于厌女症自动识别的共享任务。我们专注于任务A——厌女症和攻击性行为识别——旨在检测意大利语的推文是否厌女症,如果是,是否具有攻击性。我们没有建立两个不同的模型,一个用于厌女症,一个用于攻击性识别,而是将这个问题作为一个单一的多标签分类任务来处理,考虑了三个类别:非厌女症、非攻击性厌女症和攻击性厌女症。我们基于AlBERTo构建的三类监督模型在任务测试集上获得了0.7438的总F1分数(厌女任务F1 = 0.8102,攻击性任务F1 = 0.6774),优于最高提交的模型(F1 = 0.7406)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UniBO @ AMI: A Multi-Class Approach to Misogyny and Aggressiveness Identification on Twitter Posts Using AlBERTo
We describe our participation in the EVALITA 2020 (Basile et al., 2020) shared task on Automatic Misogyny Identification. We focus on task A —Misogyny and Aggressive Behaviour Identification— which aims at detecting whether a tweet in Italian is misogynous and, if so, whether it is aggressive. Rather than building two different models, one for misogyny and one for aggressiveness identification, we handle the problem as one single multi-label classification task, considering three classes: nonmisogynous, non-aggressive misogynous, and aggressive misogynous. Our threeclass supervised model, built on top of AlBERTo, obtains an overall F1 score of 0.7438 on the task test set (F1 = 0.8102 for the misogyny and F1 = 0.6774 for the aggressiveness task), which outperforms the top submitted model (F1 = 0.7406).1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DIACR-Ita @ EVALITA2020: Overview of the EVALITA2020 Diachronic Lexical Semantics (DIACR-Ita) Task QMUL-SDS @ DIACR-Ita: Evaluating Unsupervised Diachronic Lexical Semantics Classification in Italian (short paper) By1510 @ HaSpeeDe 2: Identification of Hate Speech for Italian Language in Social Media Data (short paper) HaSpeeDe 2 @ EVALITA2020: Overview of the EVALITA 2020 Hate Speech Detection Task KIPoS @ EVALITA2020: Overview of the Task on KIParla Part of Speech Tagging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1