{"title":"UniBO @ AMI:使用AlBERTo在Twitter帖子中识别厌女症和攻击性的多类方法","authors":"Arianna Muti, Alberto Barrón-Cedeño","doi":"10.4000/BOOKS.AACCADEMIA.6769","DOIUrl":null,"url":null,"abstract":"We describe our participation in the EVALITA 2020 (Basile et al., 2020) shared task on Automatic Misogyny Identification. We focus on task A —Misogyny and Aggressive Behaviour Identification— which aims at detecting whether a tweet in Italian is misogynous and, if so, whether it is aggressive. Rather than building two different models, one for misogyny and one for aggressiveness identification, we handle the problem as one single multi-label classification task, considering three classes: nonmisogynous, non-aggressive misogynous, and aggressive misogynous. Our threeclass supervised model, built on top of AlBERTo, obtains an overall F1 score of 0.7438 on the task test set (F1 = 0.8102 for the misogyny and F1 = 0.6774 for the aggressiveness task), which outperforms the top submitted model (F1 = 0.7406).1","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"UniBO @ AMI: A Multi-Class Approach to Misogyny and Aggressiveness Identification on Twitter Posts Using AlBERTo\",\"authors\":\"Arianna Muti, Alberto Barrón-Cedeño\",\"doi\":\"10.4000/BOOKS.AACCADEMIA.6769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe our participation in the EVALITA 2020 (Basile et al., 2020) shared task on Automatic Misogyny Identification. We focus on task A —Misogyny and Aggressive Behaviour Identification— which aims at detecting whether a tweet in Italian is misogynous and, if so, whether it is aggressive. Rather than building two different models, one for misogyny and one for aggressiveness identification, we handle the problem as one single multi-label classification task, considering three classes: nonmisogynous, non-aggressive misogynous, and aggressive misogynous. Our threeclass supervised model, built on top of AlBERTo, obtains an overall F1 score of 0.7438 on the task test set (F1 = 0.8102 for the misogyny and F1 = 0.6774 for the aggressiveness task), which outperforms the top submitted model (F1 = 0.7406).1\",\"PeriodicalId\":184564,\"journal\":{\"name\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/BOOKS.AACCADEMIA.6769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.6769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
UniBO @ AMI: A Multi-Class Approach to Misogyny and Aggressiveness Identification on Twitter Posts Using AlBERTo
We describe our participation in the EVALITA 2020 (Basile et al., 2020) shared task on Automatic Misogyny Identification. We focus on task A —Misogyny and Aggressive Behaviour Identification— which aims at detecting whether a tweet in Italian is misogynous and, if so, whether it is aggressive. Rather than building two different models, one for misogyny and one for aggressiveness identification, we handle the problem as one single multi-label classification task, considering three classes: nonmisogynous, non-aggressive misogynous, and aggressive misogynous. Our threeclass supervised model, built on top of AlBERTo, obtains an overall F1 score of 0.7438 on the task test set (F1 = 0.8102 for the misogyny and F1 = 0.6774 for the aggressiveness task), which outperforms the top submitted model (F1 = 0.7406).1