使用图像智能注释的文本图像分类器

N. Chiba
{"title":"使用图像智能注释的文本图像分类器","authors":"N. Chiba","doi":"10.1109/ACPR.2013.160","DOIUrl":null,"url":null,"abstract":"A text image classifier that requires only image-wise annotation is proposed. Although text detection methods using classifiers have been investigated, they require character-wise annotation by human operators, which is the most time-consuming phase when constructing a text detection system. The proposed classifier uses image-wise annotation whether the image contains text or not, which requires much less effort by an operator than that of character-wise annotation. From this annotation, the classifier estimates likelihood of detecting text-character candidates in an image as well as the threshold value for the system to determine if the image contains text based on prior probabilities. Experiments using real images showed the effectiveness of the proposed text image classifier.","PeriodicalId":365633,"journal":{"name":"2013 2nd IAPR Asian Conference on Pattern Recognition","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Text Image Classifier Using Image-Wise Annotation\",\"authors\":\"N. Chiba\",\"doi\":\"10.1109/ACPR.2013.160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A text image classifier that requires only image-wise annotation is proposed. Although text detection methods using classifiers have been investigated, they require character-wise annotation by human operators, which is the most time-consuming phase when constructing a text detection system. The proposed classifier uses image-wise annotation whether the image contains text or not, which requires much less effort by an operator than that of character-wise annotation. From this annotation, the classifier estimates likelihood of detecting text-character candidates in an image as well as the threshold value for the system to determine if the image contains text based on prior probabilities. Experiments using real images showed the effectiveness of the proposed text image classifier.\",\"PeriodicalId\":365633,\"journal\":{\"name\":\"2013 2nd IAPR Asian Conference on Pattern Recognition\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 2nd IAPR Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2013.160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 2nd IAPR Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2013.160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种只需要图像注释的文本图像分类器。虽然已经研究了使用分类器的文本检测方法,但它们需要人工操作员进行逐字符注释,这是构建文本检测系统时最耗时的阶段。无论图像是否包含文本,所提出的分类器都使用图像智能注释,这比字符智能注释需要的操作要少得多。从这个注释中,分类器估计在图像中检测文本字符候选的可能性,以及系统根据先验概率确定图像是否包含文本的阈值。使用真实图像的实验证明了本文提出的文本图像分类器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Text Image Classifier Using Image-Wise Annotation
A text image classifier that requires only image-wise annotation is proposed. Although text detection methods using classifiers have been investigated, they require character-wise annotation by human operators, which is the most time-consuming phase when constructing a text detection system. The proposed classifier uses image-wise annotation whether the image contains text or not, which requires much less effort by an operator than that of character-wise annotation. From this annotation, the classifier estimates likelihood of detecting text-character candidates in an image as well as the threshold value for the system to determine if the image contains text based on prior probabilities. Experiments using real images showed the effectiveness of the proposed text image classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Compensation of Radial Distortion by Minimizing Entropy of Histogram of Oriented Gradients A Robust and Efficient Minutia-Based Fingerprint Matching Algorithm Sclera Recognition - A Survey A Non-local Sparse Model for Intrinsic Images Classification Based on Boolean Algebra and Its Application to the Prediction of Recurrence of Liver Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1