{"title":"考虑种族问题的迁移学习","authors":"Akbir Khan, M. Mahmoud","doi":"10.1109/WACVW.2019.00022","DOIUrl":null,"url":null,"abstract":"As biometric applications are fielded to serve large population groups, issues of performance differences between individual sub-groups are becoming increasingly important. In this paper we examine cases where we believe race is one such factor. We look in particular at two forms of problem; facial classification and image synthesis. We take the novel approach of considering race as a boundary for transfer learning in both the task (facial classification) and the domain (synthesis over distinct datasets). We demonstrate a series of techniques to improve transfer learning of facial classification; outperforming similar models trained in the target's own domain. We conduct a study to evaluate the performance drop of Generative Adversarial Networks trained to conduct image synthesis, in this process, we produce a new annotation for the Celeb-A dataset by race. These networks are trained solely on one race and tested on another - demonstrating the subsets of the CelebA to be distinct domains for this task.","PeriodicalId":254512,"journal":{"name":"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)","volume":"247 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Considering Race a Problem of Transfer Learning\",\"authors\":\"Akbir Khan, M. Mahmoud\",\"doi\":\"10.1109/WACVW.2019.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As biometric applications are fielded to serve large population groups, issues of performance differences between individual sub-groups are becoming increasingly important. In this paper we examine cases where we believe race is one such factor. We look in particular at two forms of problem; facial classification and image synthesis. We take the novel approach of considering race as a boundary for transfer learning in both the task (facial classification) and the domain (synthesis over distinct datasets). We demonstrate a series of techniques to improve transfer learning of facial classification; outperforming similar models trained in the target's own domain. We conduct a study to evaluate the performance drop of Generative Adversarial Networks trained to conduct image synthesis, in this process, we produce a new annotation for the Celeb-A dataset by race. These networks are trained solely on one race and tested on another - demonstrating the subsets of the CelebA to be distinct domains for this task.\",\"PeriodicalId\":254512,\"journal\":{\"name\":\"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"volume\":\"247 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACVW.2019.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW.2019.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
As biometric applications are fielded to serve large population groups, issues of performance differences between individual sub-groups are becoming increasingly important. In this paper we examine cases where we believe race is one such factor. We look in particular at two forms of problem; facial classification and image synthesis. We take the novel approach of considering race as a boundary for transfer learning in both the task (facial classification) and the domain (synthesis over distinct datasets). We demonstrate a series of techniques to improve transfer learning of facial classification; outperforming similar models trained in the target's own domain. We conduct a study to evaluate the performance drop of Generative Adversarial Networks trained to conduct image synthesis, in this process, we produce a new annotation for the Celeb-A dataset by race. These networks are trained solely on one race and tested on another - demonstrating the subsets of the CelebA to be distinct domains for this task.