考虑种族问题的迁移学习

Akbir Khan, M. Mahmoud
{"title":"考虑种族问题的迁移学习","authors":"Akbir Khan, M. Mahmoud","doi":"10.1109/WACVW.2019.00022","DOIUrl":null,"url":null,"abstract":"As biometric applications are fielded to serve large population groups, issues of performance differences between individual sub-groups are becoming increasingly important. In this paper we examine cases where we believe race is one such factor. We look in particular at two forms of problem; facial classification and image synthesis. We take the novel approach of considering race as a boundary for transfer learning in both the task (facial classification) and the domain (synthesis over distinct datasets). We demonstrate a series of techniques to improve transfer learning of facial classification; outperforming similar models trained in the target's own domain. We conduct a study to evaluate the performance drop of Generative Adversarial Networks trained to conduct image synthesis, in this process, we produce a new annotation for the Celeb-A dataset by race. These networks are trained solely on one race and tested on another - demonstrating the subsets of the CelebA to be distinct domains for this task.","PeriodicalId":254512,"journal":{"name":"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)","volume":"247 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Considering Race a Problem of Transfer Learning\",\"authors\":\"Akbir Khan, M. Mahmoud\",\"doi\":\"10.1109/WACVW.2019.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As biometric applications are fielded to serve large population groups, issues of performance differences between individual sub-groups are becoming increasingly important. In this paper we examine cases where we believe race is one such factor. We look in particular at two forms of problem; facial classification and image synthesis. We take the novel approach of considering race as a boundary for transfer learning in both the task (facial classification) and the domain (synthesis over distinct datasets). We demonstrate a series of techniques to improve transfer learning of facial classification; outperforming similar models trained in the target's own domain. We conduct a study to evaluate the performance drop of Generative Adversarial Networks trained to conduct image synthesis, in this process, we produce a new annotation for the Celeb-A dataset by race. These networks are trained solely on one race and tested on another - demonstrating the subsets of the CelebA to be distinct domains for this task.\",\"PeriodicalId\":254512,\"journal\":{\"name\":\"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"volume\":\"247 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACVW.2019.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW.2019.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

随着生物识别应用的应用范围越来越广,各个子群体之间的性能差异问题变得越来越重要。在本文中,我们研究了一些我们认为种族是其中一个因素的案例。我们特别关注两种形式的问题;人脸分类与图像合成。我们采用了一种新颖的方法,将种族作为任务(面部分类)和领域(不同数据集的综合)迁移学习的边界。我们展示了一系列改进面部分类迁移学习的技术;优于在目标领域训练的类似模型。我们进行了一项研究,以评估生成对抗网络训练进行图像合成的性能下降,在这个过程中,我们根据种族为名人- a数据集生成了一个新的注释。这些网络仅在一个种族上进行训练,并在另一个种族上进行测试-证明CelebA的子集是该任务的不同域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Considering Race a Problem of Transfer Learning
As biometric applications are fielded to serve large population groups, issues of performance differences between individual sub-groups are becoming increasingly important. In this paper we examine cases where we believe race is one such factor. We look in particular at two forms of problem; facial classification and image synthesis. We take the novel approach of considering race as a boundary for transfer learning in both the task (facial classification) and the domain (synthesis over distinct datasets). We demonstrate a series of techniques to improve transfer learning of facial classification; outperforming similar models trained in the target's own domain. We conduct a study to evaluate the performance drop of Generative Adversarial Networks trained to conduct image synthesis, in this process, we produce a new annotation for the Celeb-A dataset by race. These networks are trained solely on one race and tested on another - demonstrating the subsets of the CelebA to be distinct domains for this task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Can Liveness Be Automatically Detected from Latent Fingerprints? Novel Activities Detection Algorithm in Extended Videos Exploring Automatic Face Recognition on Match Performance and Gender Bias for Children MFC Datasets: Large-Scale Benchmark Datasets for Media Forensic Challenge Evaluation Sponsors and Corporate Donors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1