{"title":"表示动态概念的尝试","authors":"K. Kawase, T. Takagi","doi":"10.1109/NAFIPS.2002.1018112","DOIUrl":null,"url":null,"abstract":"We consider the expression and recognition of dynamic concepts by regarding the movement patterns learned in a recurrent neural net as symbols. We then develop a method to express more abstract dynamic concepts by combining them with symbols and connecting several recurrent neural networks. Application of the method to actual recognition cases, ball bouncing and dancing, demonstrated its effectiveness. These experiments show the ability of the method to deal with dynamic concepts that are difficult to describe because of vagueness.","PeriodicalId":348314,"journal":{"name":"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)","volume":"203 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A trial to represent dynamic concepts\",\"authors\":\"K. Kawase, T. Takagi\",\"doi\":\"10.1109/NAFIPS.2002.1018112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the expression and recognition of dynamic concepts by regarding the movement patterns learned in a recurrent neural net as symbols. We then develop a method to express more abstract dynamic concepts by combining them with symbols and connecting several recurrent neural networks. Application of the method to actual recognition cases, ball bouncing and dancing, demonstrated its effectiveness. These experiments show the ability of the method to deal with dynamic concepts that are difficult to describe because of vagueness.\",\"PeriodicalId\":348314,\"journal\":{\"name\":\"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)\",\"volume\":\"203 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2002.1018112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2002.1018112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将递归神经网络中学习到的运动模式作为符号来考虑动态概念的表达和识别。然后,我们开发了一种通过将抽象的动态概念与符号结合并连接几个递归神经网络来表达抽象动态概念的方法。将该方法应用于弹跳球和跳舞等实际识别案例,验证了该方法的有效性。这些实验表明,该方法能够处理由于模糊性而难以描述的动态概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A trial to represent dynamic concepts
We consider the expression and recognition of dynamic concepts by regarding the movement patterns learned in a recurrent neural net as symbols. We then develop a method to express more abstract dynamic concepts by combining them with symbols and connecting several recurrent neural networks. Application of the method to actual recognition cases, ball bouncing and dancing, demonstrated its effectiveness. These experiments show the ability of the method to deal with dynamic concepts that are difficult to describe because of vagueness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy linear clustering for fabric selection from online database Fuzzy clustering in vision recognition applied in NAVI Fuzzy functions to select an optimal action in decision theory Fuzzy systems and soft O.R Conceptual fuzzy sets-based navigation system for Yahoo!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1