Spatula:大型摄像机网络上高效的跨摄像机视频分析

Samvit Jain, Xun Zhang, Yuhao Zhou, G. Ananthanarayanan, Junchen Jiang, Yuanchao Shu, P. Bahl, Joseph Gonzalez
{"title":"Spatula:大型摄像机网络上高效的跨摄像机视频分析","authors":"Samvit Jain, Xun Zhang, Yuhao Zhou, G. Ananthanarayanan, Junchen Jiang, Yuanchao Shu, P. Bahl, Joseph Gonzalez","doi":"10.1109/SEC50012.2020.00016","DOIUrl":null,"url":null,"abstract":"Cameras are deployed at scale with the purpose of searching and tracking objects of interest (e.g., a suspected person) through the camera network on live videos. Such cross-camera analytics is data and compute intensive, whose costs grow with the number of cameras and time. We present Spatula, a cost-efficient system that enables scaling cross-camera analytics on edge compute boxes to large camera networks by leveraging the spatial and temporal cross-camera correlations. While such correlations have been used in computer vision community, Spatula uses them to drastically reduce the communication and computation costs by pruning search space of a query identity (e.g., ignoring frames not correlated with the query identity’s current position). Spatula provides the first system substrate on which cross-camera analytics applications can be built to efficiently harness the cross-camera correlations that are abundant in large camera deployments. Spatula reduces compute load by $8.3\\times$ on an 8-camera dataset, and by $23\\times-86\\times$ on two datasets with hundreds of cameras (simulated from real vehicle/pedestrian traces). We have also implemented Spatula on a testbed of 5 AWS DeepLens cameras.","PeriodicalId":375577,"journal":{"name":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Spatula: Efficient cross-camera video analytics on large camera networks\",\"authors\":\"Samvit Jain, Xun Zhang, Yuhao Zhou, G. Ananthanarayanan, Junchen Jiang, Yuanchao Shu, P. Bahl, Joseph Gonzalez\",\"doi\":\"10.1109/SEC50012.2020.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cameras are deployed at scale with the purpose of searching and tracking objects of interest (e.g., a suspected person) through the camera network on live videos. Such cross-camera analytics is data and compute intensive, whose costs grow with the number of cameras and time. We present Spatula, a cost-efficient system that enables scaling cross-camera analytics on edge compute boxes to large camera networks by leveraging the spatial and temporal cross-camera correlations. While such correlations have been used in computer vision community, Spatula uses them to drastically reduce the communication and computation costs by pruning search space of a query identity (e.g., ignoring frames not correlated with the query identity’s current position). Spatula provides the first system substrate on which cross-camera analytics applications can be built to efficiently harness the cross-camera correlations that are abundant in large camera deployments. Spatula reduces compute load by $8.3\\\\times$ on an 8-camera dataset, and by $23\\\\times-86\\\\times$ on two datasets with hundreds of cameras (simulated from real vehicle/pedestrian traces). We have also implemented Spatula on a testbed of 5 AWS DeepLens cameras.\",\"PeriodicalId\":375577,\"journal\":{\"name\":\"2020 IEEE/ACM Symposium on Edge Computing (SEC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEC50012.2020.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC50012.2020.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

摄像机被大规模部署,目的是通过实时视频的摄像机网络搜索和跟踪感兴趣的对象(例如,嫌疑人)。这种跨摄像头的分析是数据和计算密集型的,其成本随着摄像头数量和时间的增长而增长。我们介绍了Spatula,这是一个经济高效的系统,通过利用空间和时间的跨相机相关性,可以将边缘计算盒上的跨相机分析扩展到大型相机网络。虽然这种相关性已经在计算机视觉社区中使用,但Spatula通过修剪查询标识的搜索空间(例如,忽略与查询标识当前位置不相关的帧)来大幅降低通信和计算成本。Spatula提供了第一个系统基板,可以在其上构建跨相机分析应用程序,以有效地利用大型相机部署中丰富的跨相机相关性。Spatula在8个摄像头的数据集上减少了8.3倍的计算负荷,在两个具有数百个摄像头的数据集上减少了23倍至86倍的计算负荷(从真实的车辆/行人轨迹模拟)。我们还在5台AWS DeepLens相机的测试平台上实现了Spatula。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatula: Efficient cross-camera video analytics on large camera networks
Cameras are deployed at scale with the purpose of searching and tracking objects of interest (e.g., a suspected person) through the camera network on live videos. Such cross-camera analytics is data and compute intensive, whose costs grow with the number of cameras and time. We present Spatula, a cost-efficient system that enables scaling cross-camera analytics on edge compute boxes to large camera networks by leveraging the spatial and temporal cross-camera correlations. While such correlations have been used in computer vision community, Spatula uses them to drastically reduce the communication and computation costs by pruning search space of a query identity (e.g., ignoring frames not correlated with the query identity’s current position). Spatula provides the first system substrate on which cross-camera analytics applications can be built to efficiently harness the cross-camera correlations that are abundant in large camera deployments. Spatula reduces compute load by $8.3\times$ on an 8-camera dataset, and by $23\times-86\times$ on two datasets with hundreds of cameras (simulated from real vehicle/pedestrian traces). We have also implemented Spatula on a testbed of 5 AWS DeepLens cameras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Position Paper: Towards a Robust Edge-Native Storage System Exploring Decentralized Collaboration in Heterogeneous Edge Training Message from the Program Co-Chairs FareQR: Fast and Reliable Screen-Camera Transfer System for Mobile Devices using QR Code Demo: EdgeVPN.io: Open-source Virtual Private Network for Seamless Edge Computing with Kubernetes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1