{"title":"用反演算法进行单位时延仿真","authors":"William J. Schilp, P. Maurer","doi":"10.1109/ICCAD.1996.569831","DOIUrl":null,"url":null,"abstract":"The Inversion Algorithm is an event driven algorithm whose performance meets or exceeds that of Levelized Compiled Code simulation, even when the activity rate is unrealistically high. Existing implementations of the Inversion Algorithm are based on the Zero Delay model. This paper extends the algorithm to more realistic timing models. The main problems discussed in this paper are avoiding scheduling conflicts, and minimizing the amount of storage space. These problems are made considerably more difficult by the deletion of NOT gates and the collapsing of various connections. These optimizations transform the simulation into a multi-delay simulation under the transport delay model. A complete solution to the scheduling problem is presented under these conditions.","PeriodicalId":408850,"journal":{"name":"Proceedings of International Conference on Computer Aided Design","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Unit delay simulation with the inversion algorithm\",\"authors\":\"William J. Schilp, P. Maurer\",\"doi\":\"10.1109/ICCAD.1996.569831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Inversion Algorithm is an event driven algorithm whose performance meets or exceeds that of Levelized Compiled Code simulation, even when the activity rate is unrealistically high. Existing implementations of the Inversion Algorithm are based on the Zero Delay model. This paper extends the algorithm to more realistic timing models. The main problems discussed in this paper are avoiding scheduling conflicts, and minimizing the amount of storage space. These problems are made considerably more difficult by the deletion of NOT gates and the collapsing of various connections. These optimizations transform the simulation into a multi-delay simulation under the transport delay model. A complete solution to the scheduling problem is presented under these conditions.\",\"PeriodicalId\":408850,\"journal\":{\"name\":\"Proceedings of International Conference on Computer Aided Design\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of International Conference on Computer Aided Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.1996.569831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Conference on Computer Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1996.569831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unit delay simulation with the inversion algorithm
The Inversion Algorithm is an event driven algorithm whose performance meets or exceeds that of Levelized Compiled Code simulation, even when the activity rate is unrealistically high. Existing implementations of the Inversion Algorithm are based on the Zero Delay model. This paper extends the algorithm to more realistic timing models. The main problems discussed in this paper are avoiding scheduling conflicts, and minimizing the amount of storage space. These problems are made considerably more difficult by the deletion of NOT gates and the collapsing of various connections. These optimizations transform the simulation into a multi-delay simulation under the transport delay model. A complete solution to the scheduling problem is presented under these conditions.