利用塌陷变分潜狄利克雷分配从文献中预测蛋白质与蛋白质的关系

Tatsuya Asou, K. Eguchi
{"title":"利用塌陷变分潜狄利克雷分配从文献中预测蛋白质与蛋白质的关系","authors":"Tatsuya Asou, K. Eguchi","doi":"10.1145/1458449.1458467","DOIUrl":null,"url":null,"abstract":"This paper investigates applying statistical topic models to extract and predict relationships between biological entities, especially protein mentions. A statistical topic model, Latent Dirichlet Allocation (LDA) is promising; however, it has not been investigated for such a task. In this paper, we apply the state-of-the-art Collapsed Variational Bayesian Inference and Gibbs Sampling inference to estimating the LDA model, and compared them from the viewpoints of log-likelihoods, classification accuracy and retrieval effectiveness. We demonstrate through experiments that the Collapsed Variational LDA gives better results than the other, especially in terms of classification accuracy and retrieval effectiveness in the task of the protein-protein relationship prediction.","PeriodicalId":143937,"journal":{"name":"Data and Text Mining in Bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Predicting protein-protein relationships from literature using collapsed variational latent dirichlet allocation\",\"authors\":\"Tatsuya Asou, K. Eguchi\",\"doi\":\"10.1145/1458449.1458467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates applying statistical topic models to extract and predict relationships between biological entities, especially protein mentions. A statistical topic model, Latent Dirichlet Allocation (LDA) is promising; however, it has not been investigated for such a task. In this paper, we apply the state-of-the-art Collapsed Variational Bayesian Inference and Gibbs Sampling inference to estimating the LDA model, and compared them from the viewpoints of log-likelihoods, classification accuracy and retrieval effectiveness. We demonstrate through experiments that the Collapsed Variational LDA gives better results than the other, especially in terms of classification accuracy and retrieval effectiveness in the task of the protein-protein relationship prediction.\",\"PeriodicalId\":143937,\"journal\":{\"name\":\"Data and Text Mining in Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data and Text Mining in Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1458449.1458467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data and Text Mining in Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1458449.1458467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文研究了应用统计主题模型来提取和预测生物实体之间的关系,特别是蛋白质提及。潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)是一种很有前途的统计主题模型;然而,它还没有被研究用于这样的任务。本文将最先进的崩溃变分贝叶斯推理和吉布斯抽样推理应用于LDA模型的估计,并从对数似然、分类准确率和检索效率三个方面对它们进行了比较。通过实验证明,在蛋白质-蛋白质关系预测任务中,崩塌变分LDA在分类精度和检索效率方面优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting protein-protein relationships from literature using collapsed variational latent dirichlet allocation
This paper investigates applying statistical topic models to extract and predict relationships between biological entities, especially protein mentions. A statistical topic model, Latent Dirichlet Allocation (LDA) is promising; however, it has not been investigated for such a task. In this paper, we apply the state-of-the-art Collapsed Variational Bayesian Inference and Gibbs Sampling inference to estimating the LDA model, and compared them from the viewpoints of log-likelihoods, classification accuracy and retrieval effectiveness. We demonstrate through experiments that the Collapsed Variational LDA gives better results than the other, especially in terms of classification accuracy and retrieval effectiveness in the task of the protein-protein relationship prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Construction of Multi-level Networks Incorporating Molecule, Cell, Organ and Phenotype Properties for Drug-induced Phenotype Prediction Integrative Database for Exploring Compound Combinations of Natural Products for Medical Effects TILD: A Strategy to Identify Cancer-related Genes Using Title Information in Literature Data An Exploration of the Collaborative Networks for Clinical and Academic Domains in AIDS Research: A Spatial Scientometric Approach Identification of a Specific Base Sequence of Pathogenic E. Coli through a Genomic Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1