三种方法合成的硅酸镁的孔隙结构及吸附性能

M. Kravchenko, L. Kuznetsova, A. Terebilenko, M. Tsyba, I. Romanova
{"title":"三种方法合成的硅酸镁的孔隙结构及吸附性能","authors":"M. Kravchenko, L. Kuznetsova, A. Terebilenko, M. Tsyba, I. Romanova","doi":"10.15407/hftp14.01.113","DOIUrl":null,"url":null,"abstract":"The aim of presented work was to synthesize the ecologically friendly sorbents using low cost reagents based on magnesium silicates by precipitation, hydrothermal and sol-gel methods. Morphology of materials obtained was investigated by means of thermogravimetric analysis (TG-DTA), low temperature adsorption/desorption method, scanning and transmission electron microscopic studies (SEM and TEM). It has been found that all sorbents are obtained in a form of amorphous layer-structure magnesium silicates with the micro- and mesoporous structure. Based on low temperature nitrogen isotherms, the specific surface area and volume of micropores calculated by the Brunauer-Emmet-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods were the greatest for the sample obtained by sol gel method (SBET = 640 m2/g, Vmicro = 0.26 cm3/g) while the sample synthesized by precipitation had the biggest volume of mesopores among the materials investigated (Vmeso = 0.39 cm3/g). As follows from TEM images, all samples consist of particles with the size from 10 up to 50 nm, the sample synthesized by sol gel method had the most homogeneous structure (MgSi-3). The ion exchange capacities of materials in the process of Cs+, Sr2+, Cu2+, and Co2+ removing from aqueous solution were determined and it was found that these properties depend on the method of materials obtaining. Data showed that magnesium silicate synthesized by precipitation method has the higher capacity toward the heavy metal cations compared to the radionuclides (1.56 and 0.96 mmol/g for cobalt and copper, respectively). For two samples synthesized by hydrothermal and sol-gel methods the increasing was fixed of capacity towards cesium and strontium ions that could be explained by the significant amounts of pores approx 2.6 nm radii in their structure. Experimental data were fitted to the Langmuir models. Analysing the data of adsorption studies, it was noted that all materials obtained can be used in adsorption technology for purification of water from heavy metal ions and radionuclides.","PeriodicalId":296392,"journal":{"name":"Himia, Fizika ta Tehnologia Poverhni","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porous structure and adsorption properties of magnesium silicates synthesized by three routes\",\"authors\":\"M. Kravchenko, L. Kuznetsova, A. Terebilenko, M. Tsyba, I. Romanova\",\"doi\":\"10.15407/hftp14.01.113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of presented work was to synthesize the ecologically friendly sorbents using low cost reagents based on magnesium silicates by precipitation, hydrothermal and sol-gel methods. Morphology of materials obtained was investigated by means of thermogravimetric analysis (TG-DTA), low temperature adsorption/desorption method, scanning and transmission electron microscopic studies (SEM and TEM). It has been found that all sorbents are obtained in a form of amorphous layer-structure magnesium silicates with the micro- and mesoporous structure. Based on low temperature nitrogen isotherms, the specific surface area and volume of micropores calculated by the Brunauer-Emmet-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods were the greatest for the sample obtained by sol gel method (SBET = 640 m2/g, Vmicro = 0.26 cm3/g) while the sample synthesized by precipitation had the biggest volume of mesopores among the materials investigated (Vmeso = 0.39 cm3/g). As follows from TEM images, all samples consist of particles with the size from 10 up to 50 nm, the sample synthesized by sol gel method had the most homogeneous structure (MgSi-3). The ion exchange capacities of materials in the process of Cs+, Sr2+, Cu2+, and Co2+ removing from aqueous solution were determined and it was found that these properties depend on the method of materials obtaining. Data showed that magnesium silicate synthesized by precipitation method has the higher capacity toward the heavy metal cations compared to the radionuclides (1.56 and 0.96 mmol/g for cobalt and copper, respectively). For two samples synthesized by hydrothermal and sol-gel methods the increasing was fixed of capacity towards cesium and strontium ions that could be explained by the significant amounts of pores approx 2.6 nm radii in their structure. Experimental data were fitted to the Langmuir models. Analysing the data of adsorption studies, it was noted that all materials obtained can be used in adsorption technology for purification of water from heavy metal ions and radionuclides.\",\"PeriodicalId\":296392,\"journal\":{\"name\":\"Himia, Fizika ta Tehnologia Poverhni\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Himia, Fizika ta Tehnologia Poverhni\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/hftp14.01.113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Himia, Fizika ta Tehnologia Poverhni","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/hftp14.01.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以硅酸镁为原料,采用沉淀法、水热法和溶胶-凝胶法合成了低成本的生态友好型吸附剂。通过热重分析(TG-DTA)、低温吸附/解吸法、扫描电镜(SEM)和透射电镜(TEM)对所得材料的形貌进行了研究。结果表明,吸附剂均以微孔和介孔结构的无定形层状硅酸镁形式存在。低温氮等温线结果表明,溶胶-凝胶法所得样品的微孔比表面积和体积最大(SBET = 640 m2/g, Vmicro = 0.26 cm3/g),而沉淀法所得样品的微孔体积最大(Vmeso = 0.39 cm3/g)。从TEM图像可以看出,所有样品均由粒径在10 ~ 50 nm之间的颗粒组成,溶胶-凝胶法合成的样品结构最为均匀(MgSi-3)。测定了材料在去除水溶液中Cs+、Sr2+、Cu2+和Co2+过程中的离子交换能力,发现这些性能与材料的制备方法有关。结果表明,沉淀法合成的硅酸镁对重金属阳离子的吸附能力高于放射性核素(对钴和铜的吸附能力分别为1.56和0.96 mmol/g)。对于水热法和溶胶-凝胶法合成的两种样品,对铯和锶离子的容量增加是固定的,这可以通过其结构中大量的约2.6 nm半径的孔来解释。实验数据拟合到Langmuir模型中。分析了吸附研究的数据,指出所获得的所有材料都可用于吸附技术,以净化水中的重金属离子和放射性核素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Porous structure and adsorption properties of magnesium silicates synthesized by three routes
The aim of presented work was to synthesize the ecologically friendly sorbents using low cost reagents based on magnesium silicates by precipitation, hydrothermal and sol-gel methods. Morphology of materials obtained was investigated by means of thermogravimetric analysis (TG-DTA), low temperature adsorption/desorption method, scanning and transmission electron microscopic studies (SEM and TEM). It has been found that all sorbents are obtained in a form of amorphous layer-structure magnesium silicates with the micro- and mesoporous structure. Based on low temperature nitrogen isotherms, the specific surface area and volume of micropores calculated by the Brunauer-Emmet-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods were the greatest for the sample obtained by sol gel method (SBET = 640 m2/g, Vmicro = 0.26 cm3/g) while the sample synthesized by precipitation had the biggest volume of mesopores among the materials investigated (Vmeso = 0.39 cm3/g). As follows from TEM images, all samples consist of particles with the size from 10 up to 50 nm, the sample synthesized by sol gel method had the most homogeneous structure (MgSi-3). The ion exchange capacities of materials in the process of Cs+, Sr2+, Cu2+, and Co2+ removing from aqueous solution were determined and it was found that these properties depend on the method of materials obtaining. Data showed that magnesium silicate synthesized by precipitation method has the higher capacity toward the heavy metal cations compared to the radionuclides (1.56 and 0.96 mmol/g for cobalt and copper, respectively). For two samples synthesized by hydrothermal and sol-gel methods the increasing was fixed of capacity towards cesium and strontium ions that could be explained by the significant amounts of pores approx 2.6 nm radii in their structure. Experimental data were fitted to the Langmuir models. Analysing the data of adsorption studies, it was noted that all materials obtained can be used in adsorption technology for purification of water from heavy metal ions and radionuclides.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
Mechanical, thermooxidative and biodegradable properties of composites from epoxyurethanes and chemically modified hemp woody core Photocatalytic discoloration of organic dyes in water dispersion medium by anatase-based binary nanocomposites Structure and stability of MnOx-Na2WO4/SiO2 catalyst for oxidative condensation of methane Effect of zeolites modification on their adsorption properties Removal of cesium and strontium ions from aqueous solutions using metakaolin based geopolymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1