最大熵准则核自适应滤波

Songlin Zhao, Badong Chen, J. Príncipe
{"title":"最大熵准则核自适应滤波","authors":"Songlin Zhao, Badong Chen, J. Príncipe","doi":"10.1109/IJCNN.2011.6033473","DOIUrl":null,"url":null,"abstract":"Kernel adaptive filters have drawn increasing attention due to their advantages such as universal nonlinear approximation with universal kernels, linearity and convexity in Reproducing Kernel Hilbert Space (RKHS). Among them, the kernel least mean square (KLMS) algorithm deserves particular attention because of its simplicity and sequential learning approach. Similar to most conventional adaptive filtering algorithms, the KLMS adopts the mean square error (MSE) as the adaptation cost. However, the mere second-order statistics is often not suitable for nonlinear and non-Gaussian situations. Therefore, various non-MSE criteria, which involve higher-order statistics, have received an increasing interest. Recently, the correntropy, as an alternative of MSE, has been successfully used in nonlinear and non-Gaussian signal processing and machine learning domains. This fact motivates us in this paper to develop a new kernel adaptive algorithm, called the kernel maximum correntropy (KMC), which combines the advantages of the KLMS and maximum correntropy criterion (MCC). We also study its convergence and self-regularization properties by using the energy conservation relation. The superior performance of the new algorithm has been demonstrated by simulation experiments in the noisy frequency doubling problem.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"359 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"184","resultStr":"{\"title\":\"Kernel adaptive filtering with maximum correntropy criterion\",\"authors\":\"Songlin Zhao, Badong Chen, J. Príncipe\",\"doi\":\"10.1109/IJCNN.2011.6033473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kernel adaptive filters have drawn increasing attention due to their advantages such as universal nonlinear approximation with universal kernels, linearity and convexity in Reproducing Kernel Hilbert Space (RKHS). Among them, the kernel least mean square (KLMS) algorithm deserves particular attention because of its simplicity and sequential learning approach. Similar to most conventional adaptive filtering algorithms, the KLMS adopts the mean square error (MSE) as the adaptation cost. However, the mere second-order statistics is often not suitable for nonlinear and non-Gaussian situations. Therefore, various non-MSE criteria, which involve higher-order statistics, have received an increasing interest. Recently, the correntropy, as an alternative of MSE, has been successfully used in nonlinear and non-Gaussian signal processing and machine learning domains. This fact motivates us in this paper to develop a new kernel adaptive algorithm, called the kernel maximum correntropy (KMC), which combines the advantages of the KLMS and maximum correntropy criterion (MCC). We also study its convergence and self-regularization properties by using the energy conservation relation. The superior performance of the new algorithm has been demonstrated by simulation experiments in the noisy frequency doubling problem.\",\"PeriodicalId\":415833,\"journal\":{\"name\":\"The 2011 International Joint Conference on Neural Networks\",\"volume\":\"359 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"184\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2011 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2011.6033473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 184

摘要

核自适应滤波器在核希尔伯特空间(RKHS)的再现中,以其具有通用非线性近似、线性和凸性等优点而受到越来越多的关注。其中,核最小均方(KLMS)算法因其简单性和顺序学习方法而备受关注。与大多数传统的自适应滤波算法相似,KLMS采用均方误差(MSE)作为自适应代价。然而,单纯的二阶统计量往往不适合非线性和非高斯情况。因此,涉及高阶统计量的各种非mse标准受到了越来越多的关注。近年来,相关熵作为MSE的一种替代方法,已成功地应用于非线性和非高斯信号处理以及机器学习领域。这一事实促使我们在本文中开发了一种新的核自适应算法,称为核最大相关熵(KMC),它结合了KLMS和最大相关熵准则(MCC)的优点。利用能量守恒关系研究了它的收敛性和自正则性。仿真实验证明了新算法在噪声倍频问题中的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kernel adaptive filtering with maximum correntropy criterion
Kernel adaptive filters have drawn increasing attention due to their advantages such as universal nonlinear approximation with universal kernels, linearity and convexity in Reproducing Kernel Hilbert Space (RKHS). Among them, the kernel least mean square (KLMS) algorithm deserves particular attention because of its simplicity and sequential learning approach. Similar to most conventional adaptive filtering algorithms, the KLMS adopts the mean square error (MSE) as the adaptation cost. However, the mere second-order statistics is often not suitable for nonlinear and non-Gaussian situations. Therefore, various non-MSE criteria, which involve higher-order statistics, have received an increasing interest. Recently, the correntropy, as an alternative of MSE, has been successfully used in nonlinear and non-Gaussian signal processing and machine learning domains. This fact motivates us in this paper to develop a new kernel adaptive algorithm, called the kernel maximum correntropy (KMC), which combines the advantages of the KLMS and maximum correntropy criterion (MCC). We also study its convergence and self-regularization properties by using the energy conservation relation. The superior performance of the new algorithm has been demonstrated by simulation experiments in the noisy frequency doubling problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaos of protein folding EEG-based brain dynamics of driving distraction Residential energy system control and management using adaptive dynamic programming How the core theory of CLARION captures human decision-making Wiener systems for reconstruction of missing seismic traces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1