基于机载LiDAR数据的ALOS DEM在台湾南部的精度评估

Jin-King Liu, K. Chang, Chinsu Lin, Liang-Cheng Chang
{"title":"基于机载LiDAR数据的ALOS DEM在台湾南部的精度评估","authors":"Jin-King Liu, K. Chang, Chinsu Lin, Liang-Cheng Chang","doi":"10.1109/IGARSS.2015.7326453","DOIUrl":null,"url":null,"abstract":"Recently, some global-scale DEM products, such as GTOPO30, ETOPO1, SRTM and ASTER GDEM have been published for geoscience applications. The latest product, ALOS DEM was announced to be available for a global coverage in 2016. This study examined the performance of ALOS-DEM in describing accurate morphometric and volumetric measurement of land features. A comparison was made on basis of DEM and DSM data of airborne full-waveform LiDAR data. Results showed that ALOS DEM is more approximately in reality an ALOS DSM which reveals the ground envelop surface rather than the ground bare surface. The differences between ALOS DEM and LiDAR DSM are mainly from 0 to 2.75 m with a standard deviation of 1.58 m. The differences between ALOS DEM and LiDAR DEM give a bias of as large as 20m, mostly located at the areas with abrupt change of relief and mainly in the north-facing slopes. This is probably due to ALOS sensor's geometry in corresponding to its looking-direction. The stream networks derived from both ALOS DEM and LiDAR DEM are in good agreement. It is suggested that further studies on methods for assessing geomorphometric changes in landform structures should be developed and compared.","PeriodicalId":125717,"journal":{"name":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"441 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Accuracy evaluation of ALOS DEM with airborne LiDAR data in Southern Taiwan\",\"authors\":\"Jin-King Liu, K. Chang, Chinsu Lin, Liang-Cheng Chang\",\"doi\":\"10.1109/IGARSS.2015.7326453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, some global-scale DEM products, such as GTOPO30, ETOPO1, SRTM and ASTER GDEM have been published for geoscience applications. The latest product, ALOS DEM was announced to be available for a global coverage in 2016. This study examined the performance of ALOS-DEM in describing accurate morphometric and volumetric measurement of land features. A comparison was made on basis of DEM and DSM data of airborne full-waveform LiDAR data. Results showed that ALOS DEM is more approximately in reality an ALOS DSM which reveals the ground envelop surface rather than the ground bare surface. The differences between ALOS DEM and LiDAR DSM are mainly from 0 to 2.75 m with a standard deviation of 1.58 m. The differences between ALOS DEM and LiDAR DEM give a bias of as large as 20m, mostly located at the areas with abrupt change of relief and mainly in the north-facing slopes. This is probably due to ALOS sensor's geometry in corresponding to its looking-direction. The stream networks derived from both ALOS DEM and LiDAR DEM are in good agreement. It is suggested that further studies on methods for assessing geomorphometric changes in landform structures should be developed and compared.\",\"PeriodicalId\":125717,\"journal\":{\"name\":\"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"441 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2015.7326453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2015.7326453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

近年来,全球范围的地学应用DEM产品GTOPO30、ETOPO1、SRTM和ASTER GDEM相继发布。最新产品ALOS DEM宣布将于2016年覆盖全球。本研究考察了ALOS-DEM在准确描述地形形态和体积测量方面的性能。基于机载全波形激光雷达的DEM和DSM数据进行了比较。结果表明,ALOS DEM比ALOS DSM更接近现实,它显示的是地面包络面而不是地面裸面。ALOS DEM与LiDAR DSM的差异主要在0 ~ 2.75 m之间,标准差为1.58 m。ALOS DEM与LiDAR DEM的差异偏差高达20m,且多位于地形起伏突变区域,主要分布在朝北的斜坡上。这可能是由于ALOS传感器的几何形状与其观测方向相对应。ALOS DEM和LiDAR DEM得到的流网络具有较好的一致性。建议进一步研究评估地貌结构变化的方法,并进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accuracy evaluation of ALOS DEM with airborne LiDAR data in Southern Taiwan
Recently, some global-scale DEM products, such as GTOPO30, ETOPO1, SRTM and ASTER GDEM have been published for geoscience applications. The latest product, ALOS DEM was announced to be available for a global coverage in 2016. This study examined the performance of ALOS-DEM in describing accurate morphometric and volumetric measurement of land features. A comparison was made on basis of DEM and DSM data of airborne full-waveform LiDAR data. Results showed that ALOS DEM is more approximately in reality an ALOS DSM which reveals the ground envelop surface rather than the ground bare surface. The differences between ALOS DEM and LiDAR DSM are mainly from 0 to 2.75 m with a standard deviation of 1.58 m. The differences between ALOS DEM and LiDAR DEM give a bias of as large as 20m, mostly located at the areas with abrupt change of relief and mainly in the north-facing slopes. This is probably due to ALOS sensor's geometry in corresponding to its looking-direction. The stream networks derived from both ALOS DEM and LiDAR DEM are in good agreement. It is suggested that further studies on methods for assessing geomorphometric changes in landform structures should be developed and compared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interferometric and polarimetric methods to determine SWE, fresh snow depth and the anisotropy of dry snow Usefulness assessment of polarimetric parameters for line extraction from agricultural areas DEM and DHM reconstruction in tropical forests: Tomographic results at P-band with three flight tracks Nationwide ground deformation monitoring by persistent scatterer interferometry MICAP (Microwave imager combined active and passive): A new instrument for Chinese ocean salinity satellite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1