标准偏差的随机微积分:导论

A. Amin
{"title":"标准偏差的随机微积分:导论","authors":"A. Amin","doi":"10.2139/ssrn.2337982","DOIUrl":null,"url":null,"abstract":"Every density produced by an SDE which employs normal random variables for its simulation is either linear or non-linear transformation of the normal random variables. We find this transformation in case of a general SDE by taking into account how the variance evolves in that certain SDE. We map the domain of the normal distribution into the domain of the SDE by using the algorithm given in the paper which is based on how the variance grows in the SDE. We find the Jacobian of this transformation with respect to normal density and employ a change of variables formula for densities to get the density of simulated SDE. Briefly in our method, domain of the normal distribution is divided into equal subdivisions called standard deviation fractions that expand or contract as the variance increases or decreases such that probability mass within each SD fraction remains constant. Usually 300-500 SD fractions are enough for desired accuracy. Within each normal SD fraction, stochastic integrals are evolved/mapped from normal distribution to distribution of SDE based on change of local variance independently of other SD fractions. The work for each step is roughly the same as that of one step in monte carlo but since SD fractions are only a few hundred and are independent of each other, this technique is much faster than the monte carlo simulation. Since this technique is very fast, we are confident that it will be the method of choice to evolve distributions of the SDEs as compared to the monte carlo simulations and the partial differential equations.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Calculus of Standard Deviations: An Introduction\",\"authors\":\"A. Amin\",\"doi\":\"10.2139/ssrn.2337982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Every density produced by an SDE which employs normal random variables for its simulation is either linear or non-linear transformation of the normal random variables. We find this transformation in case of a general SDE by taking into account how the variance evolves in that certain SDE. We map the domain of the normal distribution into the domain of the SDE by using the algorithm given in the paper which is based on how the variance grows in the SDE. We find the Jacobian of this transformation with respect to normal density and employ a change of variables formula for densities to get the density of simulated SDE. Briefly in our method, domain of the normal distribution is divided into equal subdivisions called standard deviation fractions that expand or contract as the variance increases or decreases such that probability mass within each SD fraction remains constant. Usually 300-500 SD fractions are enough for desired accuracy. Within each normal SD fraction, stochastic integrals are evolved/mapped from normal distribution to distribution of SDE based on change of local variance independently of other SD fractions. The work for each step is roughly the same as that of one step in monte carlo but since SD fractions are only a few hundred and are independent of each other, this technique is much faster than the monte carlo simulation. Since this technique is very fast, we are confident that it will be the method of choice to evolve distributions of the SDEs as compared to the monte carlo simulations and the partial differential equations.\",\"PeriodicalId\":320844,\"journal\":{\"name\":\"PSN: Econometrics\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2337982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2337982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用正态随机变量模拟的SDE所产生的每一个密度都是正态随机变量的线性或非线性变换。我们通过考虑方差在特定SDE中的演变方式,在一般SDE的情况下发现了这种转换。我们利用本文给出的算法将正态分布的域映射到SDE的域,该算法基于SDE的方差如何增长。我们求出该变换关于正态密度的雅可比矩阵,并利用密度的变量变换公式得到模拟SDE的密度。简而言之,在我们的方法中,正态分布的域被划分为称为标准差分数的相等细分,随着方差的增加或减少而扩大或缩小,使每个SD分数内的概率质量保持不变。通常300-500个SD分数足以达到所需的精度。在每个正态SD分数内,随机积分独立于其他SD分数,根据局部方差的变化从正态分布演化/映射为SDE的分布。每一步的工作与蒙特卡罗中的一步大致相同,但由于SD分数只有几百个并且彼此独立,因此该技术比蒙特卡罗模拟快得多。由于这种技术非常快,我们有信心,与蒙特卡罗模拟和偏微分方程相比,它将成为演化SDEs分布的首选方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stochastic Calculus of Standard Deviations: An Introduction
Every density produced by an SDE which employs normal random variables for its simulation is either linear or non-linear transformation of the normal random variables. We find this transformation in case of a general SDE by taking into account how the variance evolves in that certain SDE. We map the domain of the normal distribution into the domain of the SDE by using the algorithm given in the paper which is based on how the variance grows in the SDE. We find the Jacobian of this transformation with respect to normal density and employ a change of variables formula for densities to get the density of simulated SDE. Briefly in our method, domain of the normal distribution is divided into equal subdivisions called standard deviation fractions that expand or contract as the variance increases or decreases such that probability mass within each SD fraction remains constant. Usually 300-500 SD fractions are enough for desired accuracy. Within each normal SD fraction, stochastic integrals are evolved/mapped from normal distribution to distribution of SDE based on change of local variance independently of other SD fractions. The work for each step is roughly the same as that of one step in monte carlo but since SD fractions are only a few hundred and are independent of each other, this technique is much faster than the monte carlo simulation. Since this technique is very fast, we are confident that it will be the method of choice to evolve distributions of the SDEs as compared to the monte carlo simulations and the partial differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Inference for Moment Condition Models without Rational Expectations Augmented cointegrating linear models with possibly strongly correlated stationary and nonstationary regressors regressors Structured Additive Regression and Tree Boosting Large-Scale Precision Matrix Estimation With SQUIC Error Correction Models and Regressions for Non-Cointegrated Variables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1