低成本,无处不在的辐射威胁检测

G. Drukier, E. Rubenstein, P. R. Solomon, M. Wójtowicz, M. Serio
{"title":"低成本,无处不在的辐射威胁检测","authors":"G. Drukier, E. Rubenstein, P. R. Solomon, M. Wójtowicz, M. Serio","doi":"10.1109/THS.2011.6107897","DOIUrl":null,"url":null,"abstract":"The recent nuclear crisis at Fukushima, Japan is a stark reminder that radiation emergencies can and do happen. In addition to accidents, the potential use of radioactive materials by terrorists has raised serious concerns. While the primary concern has been with preventing these materials from entering the United States, thousands of dangerous radiological sources are already here within our borders, located in vulnerable locations in hospitals, food processing plants, and industrial sites. These sources pose a risk for use in two terrorist threats described by the Department of Health and Human Services (DHHS): the Dirty Bomb and the Silent Source. In a Dirty Bomb attack, radioactive material is dispersed using a conventional explosive. In a Silent Source attack, radioactive material is hidden in locations where people congregate (restaurants, airports, subway stations, shopping malls, etc.). Both scenarios can injure or kill people and cause significant political, social and economic disruption. This paper will describe the GammaPixTM technology, which has the potential to provide low cost, pervasive detection of, and warning against, radiation threats. The GammaPix technology is based on software analysis of the images produced by a surveillance or smartphone camera to measure the local gamma-ray radiation exposure at the device. The technology employs the inherent gamma-ray sensitivity of CCD and CMOS chips used in the digital image sensors of these devices. This paper describes the use of the technology in calibration and testing scenarios using installed video cameras and smartphone cameras.","PeriodicalId":228322,"journal":{"name":"2011 IEEE International Conference on Technologies for Homeland Security (HST)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Low cost, pervasive detection of radiation threats\",\"authors\":\"G. Drukier, E. Rubenstein, P. R. Solomon, M. Wójtowicz, M. Serio\",\"doi\":\"10.1109/THS.2011.6107897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent nuclear crisis at Fukushima, Japan is a stark reminder that radiation emergencies can and do happen. In addition to accidents, the potential use of radioactive materials by terrorists has raised serious concerns. While the primary concern has been with preventing these materials from entering the United States, thousands of dangerous radiological sources are already here within our borders, located in vulnerable locations in hospitals, food processing plants, and industrial sites. These sources pose a risk for use in two terrorist threats described by the Department of Health and Human Services (DHHS): the Dirty Bomb and the Silent Source. In a Dirty Bomb attack, radioactive material is dispersed using a conventional explosive. In a Silent Source attack, radioactive material is hidden in locations where people congregate (restaurants, airports, subway stations, shopping malls, etc.). Both scenarios can injure or kill people and cause significant political, social and economic disruption. This paper will describe the GammaPixTM technology, which has the potential to provide low cost, pervasive detection of, and warning against, radiation threats. The GammaPix technology is based on software analysis of the images produced by a surveillance or smartphone camera to measure the local gamma-ray radiation exposure at the device. The technology employs the inherent gamma-ray sensitivity of CCD and CMOS chips used in the digital image sensors of these devices. This paper describes the use of the technology in calibration and testing scenarios using installed video cameras and smartphone cameras.\",\"PeriodicalId\":228322,\"journal\":{\"name\":\"2011 IEEE International Conference on Technologies for Homeland Security (HST)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Technologies for Homeland Security (HST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/THS.2011.6107897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Technologies for Homeland Security (HST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THS.2011.6107897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

最近发生在日本福岛的核危机清楚地提醒人们,辐射紧急情况可能而且确实会发生。除了事故之外,恐怖分子可能使用放射性物质也引起了严重关注。虽然主要关注的是防止这些材料进入美国,但在我们的境内已经有数千个危险的放射源,位于医院、食品加工厂和工业场所等易受伤害的地方。这些来源有可能用于卫生和人类服务部(DHHS)所描述的两种恐怖主义威胁:脏弹和无声来源。在“脏弹”攻击中,放射性物质是用常规炸药分散的。在无声源攻击中,放射性物质被隐藏在人们聚集的地方(餐馆、机场、地铁站、购物中心等)。这两种情况都可能造成人员伤亡,并造成重大的政治、社会和经济混乱。本文将描述GammaPixTM技术,该技术具有提供低成本,普适检测和警告辐射威胁的潜力。GammaPix技术基于对监控或智能手机摄像头产生的图像进行软件分析,以测量设备处的局部伽马射线辐射暴露。该技术利用了这些设备的数字图像传感器中使用的CCD和CMOS芯片固有的伽马射线灵敏度。本文描述了该技术在使用安装的摄像机和智能手机摄像头的校准和测试场景中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low cost, pervasive detection of radiation threats
The recent nuclear crisis at Fukushima, Japan is a stark reminder that radiation emergencies can and do happen. In addition to accidents, the potential use of radioactive materials by terrorists has raised serious concerns. While the primary concern has been with preventing these materials from entering the United States, thousands of dangerous radiological sources are already here within our borders, located in vulnerable locations in hospitals, food processing plants, and industrial sites. These sources pose a risk for use in two terrorist threats described by the Department of Health and Human Services (DHHS): the Dirty Bomb and the Silent Source. In a Dirty Bomb attack, radioactive material is dispersed using a conventional explosive. In a Silent Source attack, radioactive material is hidden in locations where people congregate (restaurants, airports, subway stations, shopping malls, etc.). Both scenarios can injure or kill people and cause significant political, social and economic disruption. This paper will describe the GammaPixTM technology, which has the potential to provide low cost, pervasive detection of, and warning against, radiation threats. The GammaPix technology is based on software analysis of the images produced by a surveillance or smartphone camera to measure the local gamma-ray radiation exposure at the device. The technology employs the inherent gamma-ray sensitivity of CCD and CMOS chips used in the digital image sensors of these devices. This paper describes the use of the technology in calibration and testing scenarios using installed video cameras and smartphone cameras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Face recognition despite missing information Separating the baby from the bathwater: Toward a generic and practical framework for anonymization A calibration free hybrid RF and video surveillance system for reliable tracking and identification Low cost, pervasive detection of radiation threats Avoiding the closure of ports during a national emergency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1