电力设备位移积分反馈减振器的理论研究

Stanislav Viktorovich Vikulov, Anna Nikolaevna Spiridonova, Y. Matveev, M. Khramov
{"title":"电力设备位移积分反馈减振器的理论研究","authors":"Stanislav Viktorovich Vikulov, Anna Nikolaevna Spiridonova, Y. Matveev, M. Khramov","doi":"10.24143/2073-1574-2023-2-74-81","DOIUrl":null,"url":null,"abstract":"Reducing the vessel hull vibration caused by the power equipment is usually obtained by the effective vibration-isolating fastening. Vibration impact on the mechanisms and automation tools greatly reduces their reliability, affects the health of passengers and crew members. Despite the modern vibration-insulating materials and compensators, the problems of eliminating the variable forces transmitted from the vibration source have not been fully solved. Increasing the operational requirements for the vibration safety of water transport requires the scientifically based and technical solutions, improving the designs of vibration isolation supports for mounting the marine power plants. Vibration reduction problems must be solved both at the design stage and at the stage of construction, repair and modernization. The conducted studies of vibrations under the influence of the harmonic force, step load and gradually increasing load have shown high efficiency of the support in all cases of load application under different simulation modes. At stabilization of the position the support was controlled by the integral of the displacement. The results of the studies conducted on the test model for the vibration protection of marine power equipment showed the effectiveness of the stabilizer. There is presented a theoretical study of a stabilizer with feedback on the displacement integral in the MathCAD software package. The numerical experiment is based on the Newton equation. The parameters of the stabilizer are determined, on the basis of which it is possible to design the actuator. It can be an electric motor, the direction of rotation of which depends on the direction of displacement of the protected object. The motor rotates a screw pair that compresses the spring. The spring acts on the clutch, the torque changes and maintains the vibration source. The simulation results helped to infer that it is necessary to stabilize the position of the unit for all load application modes.","PeriodicalId":129911,"journal":{"name":"Vestnik of Astrakhan State Technical University. Series: Marine engineering and technologies","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical study of vibration stabilizer with feedback on displacement integral for power equipment\",\"authors\":\"Stanislav Viktorovich Vikulov, Anna Nikolaevna Spiridonova, Y. Matveev, M. Khramov\",\"doi\":\"10.24143/2073-1574-2023-2-74-81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing the vessel hull vibration caused by the power equipment is usually obtained by the effective vibration-isolating fastening. Vibration impact on the mechanisms and automation tools greatly reduces their reliability, affects the health of passengers and crew members. Despite the modern vibration-insulating materials and compensators, the problems of eliminating the variable forces transmitted from the vibration source have not been fully solved. Increasing the operational requirements for the vibration safety of water transport requires the scientifically based and technical solutions, improving the designs of vibration isolation supports for mounting the marine power plants. Vibration reduction problems must be solved both at the design stage and at the stage of construction, repair and modernization. The conducted studies of vibrations under the influence of the harmonic force, step load and gradually increasing load have shown high efficiency of the support in all cases of load application under different simulation modes. At stabilization of the position the support was controlled by the integral of the displacement. The results of the studies conducted on the test model for the vibration protection of marine power equipment showed the effectiveness of the stabilizer. There is presented a theoretical study of a stabilizer with feedback on the displacement integral in the MathCAD software package. The numerical experiment is based on the Newton equation. The parameters of the stabilizer are determined, on the basis of which it is possible to design the actuator. It can be an electric motor, the direction of rotation of which depends on the direction of displacement of the protected object. The motor rotates a screw pair that compresses the spring. The spring acts on the clutch, the torque changes and maintains the vibration source. The simulation results helped to infer that it is necessary to stabilize the position of the unit for all load application modes.\",\"PeriodicalId\":129911,\"journal\":{\"name\":\"Vestnik of Astrakhan State Technical University. Series: Marine engineering and technologies\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik of Astrakhan State Technical University. Series: Marine engineering and technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24143/2073-1574-2023-2-74-81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik of Astrakhan State Technical University. Series: Marine engineering and technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24143/2073-1574-2023-2-74-81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

减小动力设备引起的船体振动通常是通过有效的隔振紧固来实现的。振动对机构和自动化工具的影响大大降低了它们的可靠性,影响了乘客和机组人员的健康。尽管有了现代的隔振材料和补偿器,但消除振动源传递的变力的问题还没有完全解决。提高水上运输对振动安全的运行要求,需要科学的技术解决方案,改进船舶动力装置安装隔振支座的设计。减振问题无论是在设计阶段,还是在施工、维修和现代化建设阶段都必须解决。对简谐力、阶跃载荷和渐增载荷影响下的振动进行了研究,结果表明,在不同的仿真模式下,支座在载荷作用的所有情况下都具有较高的效率。在位置稳定时,支座由位移积分控制。通过对船舶动力设备防振试验模型的研究,验证了该稳定器的有效性。在MathCAD软件中对具有位移积分反馈的稳定器进行了理论研究。数值实验基于牛顿方程。确定了稳定器的参数,在此基础上设计了执行机构。它可以是电动机,其旋转方向取决于被保护物体的位移方向。马达转动压缩弹簧的螺杆副。弹簧作用于离合器,使扭矩变化,保持振动源。仿真结果有助于推断在所有负载应用模式下机组位置稳定是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Theoretical study of vibration stabilizer with feedback on displacement integral for power equipment
Reducing the vessel hull vibration caused by the power equipment is usually obtained by the effective vibration-isolating fastening. Vibration impact on the mechanisms and automation tools greatly reduces their reliability, affects the health of passengers and crew members. Despite the modern vibration-insulating materials and compensators, the problems of eliminating the variable forces transmitted from the vibration source have not been fully solved. Increasing the operational requirements for the vibration safety of water transport requires the scientifically based and technical solutions, improving the designs of vibration isolation supports for mounting the marine power plants. Vibration reduction problems must be solved both at the design stage and at the stage of construction, repair and modernization. The conducted studies of vibrations under the influence of the harmonic force, step load and gradually increasing load have shown high efficiency of the support in all cases of load application under different simulation modes. At stabilization of the position the support was controlled by the integral of the displacement. The results of the studies conducted on the test model for the vibration protection of marine power equipment showed the effectiveness of the stabilizer. There is presented a theoretical study of a stabilizer with feedback on the displacement integral in the MathCAD software package. The numerical experiment is based on the Newton equation. The parameters of the stabilizer are determined, on the basis of which it is possible to design the actuator. It can be an electric motor, the direction of rotation of which depends on the direction of displacement of the protected object. The motor rotates a screw pair that compresses the spring. The spring acts on the clutch, the torque changes and maintains the vibration source. The simulation results helped to infer that it is necessary to stabilize the position of the unit for all load application modes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling and evaluation of the engine oil aging intensity in marine trunk diesel engines when they are supercharged Theoretical determination of the mixer inner ring minimum allowable diameter to produce a two-phase mixture Ship electric propulsion systems transformers: specific aspects of development Prospects for the diesel fuel equipment development in the near future Evaluation method for factors affecting marine diesel engine vibration caused by cylinder-piston group operation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1