黎曼流形相关反馈的基于内容的图像检索

Pushpa B. Patil, M. Kokare
{"title":"黎曼流形相关反馈的基于内容的图像检索","authors":"Pushpa B. Patil, M. Kokare","doi":"10.1109/ICSIP.2014.9","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel approach for content-based image retrieval with relevance feedback, which is based on Riemannian Manifold learning algorithm. This method uses positive and negative (relevant/irrelevant) images labeled by the user at every feedback iteration. In this paper, we pre-computed the cost adjacency matrix and its eigenvectors corresponding to the smallest eigen values for effectiveness and efficiency of the retrieval system. Then we apply the Riemannian Manifolds learning concept to estimate the boundary between positive and negative images. Experimental results of the proposed method have been compared with earlier approaches, which show the superiority of the proposed method.","PeriodicalId":111591,"journal":{"name":"2014 Fifth International Conference on Signal and Image Processing","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Content Based Image Retrieval with Relevance Feedback Using Riemannian Manifolds\",\"authors\":\"Pushpa B. Patil, M. Kokare\",\"doi\":\"10.1109/ICSIP.2014.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a novel approach for content-based image retrieval with relevance feedback, which is based on Riemannian Manifold learning algorithm. This method uses positive and negative (relevant/irrelevant) images labeled by the user at every feedback iteration. In this paper, we pre-computed the cost adjacency matrix and its eigenvectors corresponding to the smallest eigen values for effectiveness and efficiency of the retrieval system. Then we apply the Riemannian Manifolds learning concept to estimate the boundary between positive and negative images. Experimental results of the proposed method have been compared with earlier approaches, which show the superiority of the proposed method.\",\"PeriodicalId\":111591,\"journal\":{\"name\":\"2014 Fifth International Conference on Signal and Image Processing\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Fifth International Conference on Signal and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIP.2014.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Fifth International Conference on Signal and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIP.2014.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于黎曼流形学习算法的基于内容的相关反馈图像检索方法。该方法在每次反馈迭代中使用用户标记的正面和负面(相关/不相关)图像。为了提高检索系统的有效性和效率,我们预先计算了最小特征值对应的代价邻接矩阵及其特征向量。然后应用黎曼流形学习概念来估计正负图像之间的边界。将所提方法的实验结果与前人的方法进行了比较,表明了所提方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Content Based Image Retrieval with Relevance Feedback Using Riemannian Manifolds
In this paper we propose a novel approach for content-based image retrieval with relevance feedback, which is based on Riemannian Manifold learning algorithm. This method uses positive and negative (relevant/irrelevant) images labeled by the user at every feedback iteration. In this paper, we pre-computed the cost adjacency matrix and its eigenvectors corresponding to the smallest eigen values for effectiveness and efficiency of the retrieval system. Then we apply the Riemannian Manifolds learning concept to estimate the boundary between positive and negative images. Experimental results of the proposed method have been compared with earlier approaches, which show the superiority of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rule Line Detection and Removal in Handwritten Text Images Features Based IUGR Diagnosis Using Variational Level Set Method and Classification Using Artificial Neural Networks Design of a Low Error Fixed-Width Radix-8 Booth Multiplier Content Based Image Retrieval with Relevance Feedback Using Riemannian Manifolds Wavelet Based Signal Processing Technique for Classification of Power Quality Disturbances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1