{"title":"基于模糊逻辑的超声速流动圆柱形管道突然膨胀壁面静压变化分析","authors":"K. Pandey","doi":"10.1109/ICMLC.2010.74","DOIUrl":null,"url":null,"abstract":"In this paper the analysis of wall static pressure variation has been done with fuzzy logic approach to have smooth flow in the duct. Here there are three area ratio choosen for the enlarged duct, 2.89, 6.00 and 10.00. The primary pressure ratio is taken as 2.65 and cavity aspect ratio is taken as 1 and 2. The study is analysed for length to diameter ratio of 1,2,4 and 6. The nozzles used are De Laval type and with a Mach number of 1.74 and 2.23 and conical nozzles having Mach numbers of 1.58 and 2.06. The analysis based on fuzzy logic theory indicates that the length to diameter ratio of 1 is sufficient for smooth flow development if only the basis of wall static pressure variations is considered.","PeriodicalId":423912,"journal":{"name":"2010 Second International Conference on Machine Learning and Computing","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Wall Static Pressure Variation in Sudden Expansion in Cylindrical Ducts with Supersonic Flow: A Fuzzy Logic Approach\",\"authors\":\"K. Pandey\",\"doi\":\"10.1109/ICMLC.2010.74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the analysis of wall static pressure variation has been done with fuzzy logic approach to have smooth flow in the duct. Here there are three area ratio choosen for the enlarged duct, 2.89, 6.00 and 10.00. The primary pressure ratio is taken as 2.65 and cavity aspect ratio is taken as 1 and 2. The study is analysed for length to diameter ratio of 1,2,4 and 6. The nozzles used are De Laval type and with a Mach number of 1.74 and 2.23 and conical nozzles having Mach numbers of 1.58 and 2.06. The analysis based on fuzzy logic theory indicates that the length to diameter ratio of 1 is sufficient for smooth flow development if only the basis of wall static pressure variations is considered.\",\"PeriodicalId\":423912,\"journal\":{\"name\":\"2010 Second International Conference on Machine Learning and Computing\",\"volume\":\"241 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.74\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wall Static Pressure Variation in Sudden Expansion in Cylindrical Ducts with Supersonic Flow: A Fuzzy Logic Approach
In this paper the analysis of wall static pressure variation has been done with fuzzy logic approach to have smooth flow in the duct. Here there are three area ratio choosen for the enlarged duct, 2.89, 6.00 and 10.00. The primary pressure ratio is taken as 2.65 and cavity aspect ratio is taken as 1 and 2. The study is analysed for length to diameter ratio of 1,2,4 and 6. The nozzles used are De Laval type and with a Mach number of 1.74 and 2.23 and conical nozzles having Mach numbers of 1.58 and 2.06. The analysis based on fuzzy logic theory indicates that the length to diameter ratio of 1 is sufficient for smooth flow development if only the basis of wall static pressure variations is considered.