基于fft的应变梯度加载方法的简单扩展-应用于具有线性和非线性行为的梁和板的均匀化

L. Gélébart
{"title":"基于fft的应变梯度加载方法的简单扩展-应用于具有线性和非线性行为的梁和板的均匀化","authors":"L. Gélébart","doi":"10.46298/jtcam.6790","DOIUrl":null,"url":null,"abstract":"Because of their simplicity, efficiency and ability for parallelism, FFT-based methods are very attractive in the context of numerical periodic homogenization, especially when compared to standard FE codes used in the same context. They allow applying to a unit-cell a uniform average strain with a periodic strain fluctuation that is an unknown quantity. Solving the problem allows to evaluate the complete stress-strain fields. The present work proposes to extend the use of the method from uniform loadings (i.e. uniform applied strain) to strain gradient loadings (i.e. strain fields with a uniform strain gradient) while keeping the algorithm as simple as possible. The identification of a subset of strain gradient loadings allows for a minimally invasive modification of the iterative algorithm so that the implementation is straightforward. In spite of a reduced subset of 9 independent loadings among the 18 available, the second part of the paper demonstrates that it is enough for considering the homogenization of beams and plates. A first application validates the approach and compares it to another FFT-based method dedicated to the homogenization of plates. The second application concerns the homogenization of beams, for the first time considered (to author's knowledge) with an FFT-based solver. The method applies to different beam cross-sections and the proposition of using composite voxels drastically improves the numerical solution when the beam cross-section is not conform with the spatial discretization, especially for torsion loading. As a result, the massively parallel AMITEX_FFTP code has been slightly modified and now offers a new functionality, allowing the users to prescribe torsions and flexions to beam or plate heterogeneous unit-cells.","PeriodicalId":115014,"journal":{"name":"Journal of Theoretical, Computational and Applied Mechanics","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A simple extension of FFT-based methods to strain gradient loadings - Application to the homogenization of beams and plates with linear and non-linear behaviors\",\"authors\":\"L. Gélébart\",\"doi\":\"10.46298/jtcam.6790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of their simplicity, efficiency and ability for parallelism, FFT-based methods are very attractive in the context of numerical periodic homogenization, especially when compared to standard FE codes used in the same context. They allow applying to a unit-cell a uniform average strain with a periodic strain fluctuation that is an unknown quantity. Solving the problem allows to evaluate the complete stress-strain fields. The present work proposes to extend the use of the method from uniform loadings (i.e. uniform applied strain) to strain gradient loadings (i.e. strain fields with a uniform strain gradient) while keeping the algorithm as simple as possible. The identification of a subset of strain gradient loadings allows for a minimally invasive modification of the iterative algorithm so that the implementation is straightforward. In spite of a reduced subset of 9 independent loadings among the 18 available, the second part of the paper demonstrates that it is enough for considering the homogenization of beams and plates. A first application validates the approach and compares it to another FFT-based method dedicated to the homogenization of plates. The second application concerns the homogenization of beams, for the first time considered (to author's knowledge) with an FFT-based solver. The method applies to different beam cross-sections and the proposition of using composite voxels drastically improves the numerical solution when the beam cross-section is not conform with the spatial discretization, especially for torsion loading. As a result, the massively parallel AMITEX_FFTP code has been slightly modified and now offers a new functionality, allowing the users to prescribe torsions and flexions to beam or plate heterogeneous unit-cells.\",\"PeriodicalId\":115014,\"journal\":{\"name\":\"Journal of Theoretical, Computational and Applied Mechanics\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical, Computational and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/jtcam.6790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical, Computational and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jtcam.6790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于其简单、高效和并行性,基于fft的方法在数值周期均匀化的背景下非常有吸引力,特别是与在相同背景下使用的标准有限元代码相比。它们允许在单元格上施加均匀的平均应变,并具有周期性的应变波动,这是一个未知量。求解该问题可以计算完整的应力-应变场。目前的工作建议将该方法的使用范围从均匀加载(即均匀施加应变)扩展到应变梯度加载(即具有均匀应变梯度的应变场),同时保持算法尽可能简单。应变梯度载荷子集的识别允许对迭代算法进行微创修改,以便实现简单。尽管在18个可用的独立载荷中减少了9个子集,但论文的第二部分表明,它足以考虑梁和板的均匀化。第一个应用程序验证了该方法,并将其与另一种基于fft的方法进行了比较,该方法专门用于板的均质化。第二个应用涉及光束的均匀化,这是第一次考虑(据作者所知)基于fft的求解器。该方法适用于不同的梁截面,复合体素的提出大大改善了梁截面不符合空间离散化的数值解,特别是扭转载荷。因此,大规模并行的AMITEX_FFTP代码被稍微修改了一下,现在提供了一个新的功能,允许用户指定扭转和弯曲来传送或板异构单元格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A simple extension of FFT-based methods to strain gradient loadings - Application to the homogenization of beams and plates with linear and non-linear behaviors
Because of their simplicity, efficiency and ability for parallelism, FFT-based methods are very attractive in the context of numerical periodic homogenization, especially when compared to standard FE codes used in the same context. They allow applying to a unit-cell a uniform average strain with a periodic strain fluctuation that is an unknown quantity. Solving the problem allows to evaluate the complete stress-strain fields. The present work proposes to extend the use of the method from uniform loadings (i.e. uniform applied strain) to strain gradient loadings (i.e. strain fields with a uniform strain gradient) while keeping the algorithm as simple as possible. The identification of a subset of strain gradient loadings allows for a minimally invasive modification of the iterative algorithm so that the implementation is straightforward. In spite of a reduced subset of 9 independent loadings among the 18 available, the second part of the paper demonstrates that it is enough for considering the homogenization of beams and plates. A first application validates the approach and compares it to another FFT-based method dedicated to the homogenization of plates. The second application concerns the homogenization of beams, for the first time considered (to author's knowledge) with an FFT-based solver. The method applies to different beam cross-sections and the proposition of using composite voxels drastically improves the numerical solution when the beam cross-section is not conform with the spatial discretization, especially for torsion loading. As a result, the massively parallel AMITEX_FFTP code has been slightly modified and now offers a new functionality, allowing the users to prescribe torsions and flexions to beam or plate heterogeneous unit-cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Crack branching at low tip speeds: spilling the T The average conformation tensor of inter-atomic bonds as an alternative state variable to the strain tensor: definition and first application ś the case of nanoelasticity Reduced order modeling of geometrically nonlinear rotating structures using the direct parametrisation of invariant manifolds Optimization of a dynamic absorber with nonlinear stiffness and damping for the vibration control of a floating offshore wind turbine toy model Plasticity and ductility of an anisotropic recrystallized AA2198 Al-Cu-Li alloy in T3 and T8 conditions during proportional and non-proportional loading paths: simulations and experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1