{"title":"基于fft的应变梯度加载方法的简单扩展-应用于具有线性和非线性行为的梁和板的均匀化","authors":"L. Gélébart","doi":"10.46298/jtcam.6790","DOIUrl":null,"url":null,"abstract":"Because of their simplicity, efficiency and ability for parallelism, FFT-based methods are very attractive in the context of numerical periodic homogenization, especially when compared to standard FE codes used in the same context. They allow applying to a unit-cell a uniform average strain with a periodic strain fluctuation that is an unknown quantity. Solving the problem allows to evaluate the complete stress-strain fields. The present work proposes to extend the use of the method from uniform loadings (i.e. uniform applied strain) to strain gradient loadings (i.e. strain fields with a uniform strain gradient) while keeping the algorithm as simple as possible. The identification of a subset of strain gradient loadings allows for a minimally invasive modification of the iterative algorithm so that the implementation is straightforward. In spite of a reduced subset of 9 independent loadings among the 18 available, the second part of the paper demonstrates that it is enough for considering the homogenization of beams and plates. A first application validates the approach and compares it to another FFT-based method dedicated to the homogenization of plates. The second application concerns the homogenization of beams, for the first time considered (to author's knowledge) with an FFT-based solver. The method applies to different beam cross-sections and the proposition of using composite voxels drastically improves the numerical solution when the beam cross-section is not conform with the spatial discretization, especially for torsion loading. As a result, the massively parallel AMITEX_FFTP code has been slightly modified and now offers a new functionality, allowing the users to prescribe torsions and flexions to beam or plate heterogeneous unit-cells.","PeriodicalId":115014,"journal":{"name":"Journal of Theoretical, Computational and Applied Mechanics","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A simple extension of FFT-based methods to strain gradient loadings - Application to the homogenization of beams and plates with linear and non-linear behaviors\",\"authors\":\"L. Gélébart\",\"doi\":\"10.46298/jtcam.6790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of their simplicity, efficiency and ability for parallelism, FFT-based methods are very attractive in the context of numerical periodic homogenization, especially when compared to standard FE codes used in the same context. They allow applying to a unit-cell a uniform average strain with a periodic strain fluctuation that is an unknown quantity. Solving the problem allows to evaluate the complete stress-strain fields. The present work proposes to extend the use of the method from uniform loadings (i.e. uniform applied strain) to strain gradient loadings (i.e. strain fields with a uniform strain gradient) while keeping the algorithm as simple as possible. The identification of a subset of strain gradient loadings allows for a minimally invasive modification of the iterative algorithm so that the implementation is straightforward. In spite of a reduced subset of 9 independent loadings among the 18 available, the second part of the paper demonstrates that it is enough for considering the homogenization of beams and plates. A first application validates the approach and compares it to another FFT-based method dedicated to the homogenization of plates. The second application concerns the homogenization of beams, for the first time considered (to author's knowledge) with an FFT-based solver. The method applies to different beam cross-sections and the proposition of using composite voxels drastically improves the numerical solution when the beam cross-section is not conform with the spatial discretization, especially for torsion loading. As a result, the massively parallel AMITEX_FFTP code has been slightly modified and now offers a new functionality, allowing the users to prescribe torsions and flexions to beam or plate heterogeneous unit-cells.\",\"PeriodicalId\":115014,\"journal\":{\"name\":\"Journal of Theoretical, Computational and Applied Mechanics\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical, Computational and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/jtcam.6790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical, Computational and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jtcam.6790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A simple extension of FFT-based methods to strain gradient loadings - Application to the homogenization of beams and plates with linear and non-linear behaviors
Because of their simplicity, efficiency and ability for parallelism, FFT-based methods are very attractive in the context of numerical periodic homogenization, especially when compared to standard FE codes used in the same context. They allow applying to a unit-cell a uniform average strain with a periodic strain fluctuation that is an unknown quantity. Solving the problem allows to evaluate the complete stress-strain fields. The present work proposes to extend the use of the method from uniform loadings (i.e. uniform applied strain) to strain gradient loadings (i.e. strain fields with a uniform strain gradient) while keeping the algorithm as simple as possible. The identification of a subset of strain gradient loadings allows for a minimally invasive modification of the iterative algorithm so that the implementation is straightforward. In spite of a reduced subset of 9 independent loadings among the 18 available, the second part of the paper demonstrates that it is enough for considering the homogenization of beams and plates. A first application validates the approach and compares it to another FFT-based method dedicated to the homogenization of plates. The second application concerns the homogenization of beams, for the first time considered (to author's knowledge) with an FFT-based solver. The method applies to different beam cross-sections and the proposition of using composite voxels drastically improves the numerical solution when the beam cross-section is not conform with the spatial discretization, especially for torsion loading. As a result, the massively parallel AMITEX_FFTP code has been slightly modified and now offers a new functionality, allowing the users to prescribe torsions and flexions to beam or plate heterogeneous unit-cells.