{"title":"计算结构动力学的精确显式直接时间积分方法","authors":"B. Tchamwa, T. Conway, C. Wielgosz","doi":"10.1115/imece1999-0617","DOIUrl":null,"url":null,"abstract":"\n The purpose of this paper is to introduce a new simple explicit single step time integration method with controllable high-frequency dissipation. As opposed to the methods generally used in structural dynamics, with a consistency experimentally chosen of second order, the new method is only first-order-consistent but yields smaller numerical errors in low frequencies and is therefore very efficient for structural dynamic analysis.\n The new method remains explicit for any structural dynamics problem, even when a non-diagonal damping matrix is used in linear structural dynamics problem or when the non-linear internal force vector is a function of velocities. Convergence and spectral properties of the new algorithm are discussed and compared to those of some well-known algorithms. Furthermore, the validity and efficiency of the new algorithm are shown in a non-linear dynamic example by comparison of phase portraits.","PeriodicalId":270413,"journal":{"name":"Recent Advances in Solids and Structures","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"An Accurate Explicit Direct Time Integration Method for Computational Structural Dynamics\",\"authors\":\"B. Tchamwa, T. Conway, C. Wielgosz\",\"doi\":\"10.1115/imece1999-0617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The purpose of this paper is to introduce a new simple explicit single step time integration method with controllable high-frequency dissipation. As opposed to the methods generally used in structural dynamics, with a consistency experimentally chosen of second order, the new method is only first-order-consistent but yields smaller numerical errors in low frequencies and is therefore very efficient for structural dynamic analysis.\\n The new method remains explicit for any structural dynamics problem, even when a non-diagonal damping matrix is used in linear structural dynamics problem or when the non-linear internal force vector is a function of velocities. Convergence and spectral properties of the new algorithm are discussed and compared to those of some well-known algorithms. Furthermore, the validity and efficiency of the new algorithm are shown in a non-linear dynamic example by comparison of phase portraits.\",\"PeriodicalId\":270413,\"journal\":{\"name\":\"Recent Advances in Solids and Structures\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Solids and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1999-0617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Solids and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1999-0617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Accurate Explicit Direct Time Integration Method for Computational Structural Dynamics
The purpose of this paper is to introduce a new simple explicit single step time integration method with controllable high-frequency dissipation. As opposed to the methods generally used in structural dynamics, with a consistency experimentally chosen of second order, the new method is only first-order-consistent but yields smaller numerical errors in low frequencies and is therefore very efficient for structural dynamic analysis.
The new method remains explicit for any structural dynamics problem, even when a non-diagonal damping matrix is used in linear structural dynamics problem or when the non-linear internal force vector is a function of velocities. Convergence and spectral properties of the new algorithm are discussed and compared to those of some well-known algorithms. Furthermore, the validity and efficiency of the new algorithm are shown in a non-linear dynamic example by comparison of phase portraits.