基于云网络统一威胁管理平台的事件检测

Muhammad Muneeb Saad, Talha Iqbal, Hazrat Ali, Mohammad Farhad Bulbul, Shahid Khan, C. Tanougast
{"title":"基于云网络统一威胁管理平台的事件检测","authors":"Muhammad Muneeb Saad, Talha Iqbal, Hazrat Ali, Mohammad Farhad Bulbul, Shahid Khan, C. Tanougast","doi":"10.1109/IDAACS.2019.8924299","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence (AI) techniques provide many intelligent methods for security solutions in various domains such as finance, networking, cloud computing, health records and individual's identity. AI achieves security mechanisms like antivirus, firewalls, intrusion detection system (IDS) and cryptography by using machine learning methods and data analysis techniques. As the modern AI techniques help improving security systems, criminal activities are also becoming updated simultaneously. Machine learning methods along with data analysis tools have become popular to prevent security systems from threats and hacking activities. This work contributes to secure cloud networks and help them prevent malicious attacks. In this paper, Bidirectional long short-term memory (BLSTM) is used to detect incidents over unified threat management (UTM) platform operated on cloud network. Results are compared with K-nearest neighbor which is a baseline technique. Time series input samples recorded over UTM platform are used for training and testing purposes. We obtain accuracy score of 98.47% with 0.0186 mean squared error (MSE) using KNN while BLSTM provides 98.6% accuracy score with 0.002 loss, which is better than the KNN.","PeriodicalId":415006,"journal":{"name":"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Incident Detection over Unified Threat Management Platform on a Cloud Network\",\"authors\":\"Muhammad Muneeb Saad, Talha Iqbal, Hazrat Ali, Mohammad Farhad Bulbul, Shahid Khan, C. Tanougast\",\"doi\":\"10.1109/IDAACS.2019.8924299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Intelligence (AI) techniques provide many intelligent methods for security solutions in various domains such as finance, networking, cloud computing, health records and individual's identity. AI achieves security mechanisms like antivirus, firewalls, intrusion detection system (IDS) and cryptography by using machine learning methods and data analysis techniques. As the modern AI techniques help improving security systems, criminal activities are also becoming updated simultaneously. Machine learning methods along with data analysis tools have become popular to prevent security systems from threats and hacking activities. This work contributes to secure cloud networks and help them prevent malicious attacks. In this paper, Bidirectional long short-term memory (BLSTM) is used to detect incidents over unified threat management (UTM) platform operated on cloud network. Results are compared with K-nearest neighbor which is a baseline technique. Time series input samples recorded over UTM platform are used for training and testing purposes. We obtain accuracy score of 98.47% with 0.0186 mean squared error (MSE) using KNN while BLSTM provides 98.6% accuracy score with 0.002 loss, which is better than the KNN.\",\"PeriodicalId\":415006,\"journal\":{\"name\":\"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDAACS.2019.8924299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAACS.2019.8924299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人工智能(AI)技术为金融、网络、云计算、健康记录和个人身份等各个领域的安全解决方案提供了许多智能方法。人工智能通过机器学习方法和数据分析技术来实现防病毒、防火墙、入侵检测系统(IDS)和密码学等安全机制。随着现代人工智能技术帮助改善安全系统,犯罪活动也在同步更新。机器学习方法和数据分析工具已经变得流行,以防止安全系统受到威胁和黑客活动。这项工作有助于确保云网络的安全,并帮助它们防止恶意攻击。本文将双向长短期记忆(Bidirectional long - short- memory, BLSTM)用于云网络统一威胁管理(unified threat management, UTM)平台上的事件检测。将结果与基线技术k近邻进行比较。在UTM平台上记录的时间序列输入样本用于培训和测试目的。我们使用KNN获得98.47%的准确率分数,均方误差(MSE)为0.0186,而使用BLSTM获得98.6%的准确率分数,损失为0.002,优于KNN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Incident Detection over Unified Threat Management Platform on a Cloud Network
Artificial Intelligence (AI) techniques provide many intelligent methods for security solutions in various domains such as finance, networking, cloud computing, health records and individual's identity. AI achieves security mechanisms like antivirus, firewalls, intrusion detection system (IDS) and cryptography by using machine learning methods and data analysis techniques. As the modern AI techniques help improving security systems, criminal activities are also becoming updated simultaneously. Machine learning methods along with data analysis tools have become popular to prevent security systems from threats and hacking activities. This work contributes to secure cloud networks and help them prevent malicious attacks. In this paper, Bidirectional long short-term memory (BLSTM) is used to detect incidents over unified threat management (UTM) platform operated on cloud network. Results are compared with K-nearest neighbor which is a baseline technique. Time series input samples recorded over UTM platform are used for training and testing purposes. We obtain accuracy score of 98.47% with 0.0186 mean squared error (MSE) using KNN while BLSTM provides 98.6% accuracy score with 0.002 loss, which is better than the KNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Method for Optimum Placement of Access Points in Indoor Positioning Systems On Development of Machine Learning Models with Aim of Medical Differential Diagnostics of the Comorbid States Business Models for Wireless AAL Systems — Financing Strategies Accuracy Enhancement of a Blind Image Steganalysis Approach Using Dynamic Learning Rate-Based CNN on GPUs Human-Machine Interaction in the Remote Control System of Electric Charging Stations Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1