基于多特征融合和深度信念网络的图像分类算法

Yanxue Dong
{"title":"基于多特征融合和深度信念网络的图像分类算法","authors":"Yanxue Dong","doi":"10.1109/ICSAI.2017.8248398","DOIUrl":null,"url":null,"abstract":"The Image Classification Algorithm Based on Multi-feature Fusion and Deep Belief Networks is a method which extracts the color, texture and shape features of the image and integrates the three basic features first, and then, the fusion information is used as the input data of the deep belief networks model to train the samples and realize image classification. The results show that the classification accuracy can be improved by 21.2% compared with the image classification using a single feature. Compared with the mainstream classification algorithms, the classification accuracy can be effectively improved and it need no more time consuming.","PeriodicalId":285726,"journal":{"name":"2017 4th International Conference on Systems and Informatics (ICSAI)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image classification algorithm based on multi — Feature fusion and deep belief network\",\"authors\":\"Yanxue Dong\",\"doi\":\"10.1109/ICSAI.2017.8248398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Image Classification Algorithm Based on Multi-feature Fusion and Deep Belief Networks is a method which extracts the color, texture and shape features of the image and integrates the three basic features first, and then, the fusion information is used as the input data of the deep belief networks model to train the samples and realize image classification. The results show that the classification accuracy can be improved by 21.2% compared with the image classification using a single feature. Compared with the mainstream classification algorithms, the classification accuracy can be effectively improved and it need no more time consuming.\",\"PeriodicalId\":285726,\"journal\":{\"name\":\"2017 4th International Conference on Systems and Informatics (ICSAI)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 4th International Conference on Systems and Informatics (ICSAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI.2017.8248398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2017.8248398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于多特征融合和深度信念网络的图像分类算法是一种先提取图像的颜色、纹理和形状特征并将这三个基本特征进行融合,然后将融合信息作为深度信念网络模型的输入数据进行样本训练并实现图像分类的方法。结果表明,与使用单一特征进行图像分类相比,该方法的分类准确率可提高21.2%。与主流的分类算法相比,该算法可以有效地提高分类精度,并且不需要更多的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image classification algorithm based on multi — Feature fusion and deep belief network
The Image Classification Algorithm Based on Multi-feature Fusion and Deep Belief Networks is a method which extracts the color, texture and shape features of the image and integrates the three basic features first, and then, the fusion information is used as the input data of the deep belief networks model to train the samples and realize image classification. The results show that the classification accuracy can be improved by 21.2% compared with the image classification using a single feature. Compared with the mainstream classification algorithms, the classification accuracy can be effectively improved and it need no more time consuming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive coverage control with Guaranteed Power Voronoi Diagrams Gray relativity analysis used to track association in passive sonar system Music visualization based on the MIDI specifications for multidimensional polyphonic expression Modeling of a data modification cyber-attack in an IEC 61850 scenario using stochastic colored Petri Nets Four nonlinear multi-input multi-output ADHDP constructions and algorithms based on topology principle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1