协变量基因集分析

I. Bebu, F. Seillier-Moiseiwitsch, Jing Wu, T. Mathew
{"title":"协变量基因集分析","authors":"I. Bebu, F. Seillier-Moiseiwitsch, Jing Wu, T. Mathew","doi":"10.1109/BIBE.2010.63","DOIUrl":null,"url":null,"abstract":"In microarray experiments, expression profiles are obtained for thousands of genes under several treatments. Traditionally, most of the statistical techniques employed are concentrated around univariate methods. They ignore the inter-gene dependence and do not use any prior biological knowledge. Gene set analysis addresses both these concerns by analyzing together a group of correlated genes, for example genes that share a common biological function, chromosomal location, or regulation. In this paper we propose a multivariate analysis of covariance model (MANCOVA) for gene set analysis with covariates. Principal component analysis (PCA) is used to address the dimensionality problem. The two testing procedures presented are shown to perform well using simulations.","PeriodicalId":330904,"journal":{"name":"2010 IEEE International Conference on BioInformatics and BioEngineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene Set Analysis with Covariates\",\"authors\":\"I. Bebu, F. Seillier-Moiseiwitsch, Jing Wu, T. Mathew\",\"doi\":\"10.1109/BIBE.2010.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In microarray experiments, expression profiles are obtained for thousands of genes under several treatments. Traditionally, most of the statistical techniques employed are concentrated around univariate methods. They ignore the inter-gene dependence and do not use any prior biological knowledge. Gene set analysis addresses both these concerns by analyzing together a group of correlated genes, for example genes that share a common biological function, chromosomal location, or regulation. In this paper we propose a multivariate analysis of covariance model (MANCOVA) for gene set analysis with covariates. Principal component analysis (PCA) is used to address the dimensionality problem. The two testing procedures presented are shown to perform well using simulations.\",\"PeriodicalId\":330904,\"journal\":{\"name\":\"2010 IEEE International Conference on BioInformatics and BioEngineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on BioInformatics and BioEngineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2010.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on BioInformatics and BioEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2010.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在微阵列实验中,在几种处理下获得了数千个基因的表达谱。传统上,大多数采用的统计技术都集中在单变量方法上。他们忽略了基因间的依赖性,不使用任何先前的生物学知识。基因集分析通过分析一组相关基因来解决这两个问题,例如共享共同生物功能、染色体位置或调节的基因。本文提出了一种多变量协方差分析模型(MANCOVA),用于含协变量的基因集分析。主成分分析(PCA)用于解决维数问题。仿真结果表明,所提出的两种测试方法都具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gene Set Analysis with Covariates
In microarray experiments, expression profiles are obtained for thousands of genes under several treatments. Traditionally, most of the statistical techniques employed are concentrated around univariate methods. They ignore the inter-gene dependence and do not use any prior biological knowledge. Gene set analysis addresses both these concerns by analyzing together a group of correlated genes, for example genes that share a common biological function, chromosomal location, or regulation. In this paper we propose a multivariate analysis of covariance model (MANCOVA) for gene set analysis with covariates. Principal component analysis (PCA) is used to address the dimensionality problem. The two testing procedures presented are shown to perform well using simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessment of the Binding Characteristics of Human Immunodeficiency Virus Type 1 Glycoprotein120 and Host Cluster of Differentiation4 Using Digital Signal Processing Detection of Mild Cognitive Impairment Using Image Differences and Clinical Features Quantification and Analysis of Combination Drug Synergy in High-Throughput Transcriptome Studies Gene Set Analysis with Covariates A Comparative Study of a Novel AE-nLMS Filter and Two Traditional Filters in Predicting Respiration Induced Motion of the Tumor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1