阿拉伯海湾地区溢油检测系统:Azure机器学习方法

Shaima Almeer, Fatema A. Albalooshi, Aysha Alhajeri
{"title":"阿拉伯海湾地区溢油检测系统:Azure机器学习方法","authors":"Shaima Almeer, Fatema A. Albalooshi, Aysha Alhajeri","doi":"10.1109/3ICT53449.2021.9581841","DOIUrl":null,"url":null,"abstract":"Locating oil spills is a crucial portion of an effective marine contamination administration. In this paper, we address the issue of oil spillage location exposure within the Arabian Gulf region, by leveraging a Machine-Learning (ML) workflow on a cloud-based computing platform: Microsoft Azure Machine-Learning Service (Custom Vision). Our workflow comprises of virtual machine, database, and four modules (Information Collection Module, Discovery Show, Application Module, and a Choice Module). The adequacy of the proposed workflow is assessed on Synthetic Aperture Radar (SAR) imagery of the targeted region. Qualitative and quantitative analysis show that the purposed algorithm can detect oil spill occurrence with an accuracy of 90.5%.","PeriodicalId":133021,"journal":{"name":"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oil Spill Detection System in the Arabian Gulf Region: An Azure Machine-Learning Approach\",\"authors\":\"Shaima Almeer, Fatema A. Albalooshi, Aysha Alhajeri\",\"doi\":\"10.1109/3ICT53449.2021.9581841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Locating oil spills is a crucial portion of an effective marine contamination administration. In this paper, we address the issue of oil spillage location exposure within the Arabian Gulf region, by leveraging a Machine-Learning (ML) workflow on a cloud-based computing platform: Microsoft Azure Machine-Learning Service (Custom Vision). Our workflow comprises of virtual machine, database, and four modules (Information Collection Module, Discovery Show, Application Module, and a Choice Module). The adequacy of the proposed workflow is assessed on Synthetic Aperture Radar (SAR) imagery of the targeted region. Qualitative and quantitative analysis show that the purposed algorithm can detect oil spill occurrence with an accuracy of 90.5%.\",\"PeriodicalId\":133021,\"journal\":{\"name\":\"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3ICT53449.2021.9581841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3ICT53449.2021.9581841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

定位溢油是有效的海洋污染管理的关键部分。在本文中,我们通过利用基于云计算平台的机器学习(ML)工作流程:Microsoft Azure机器学习服务(自定义视觉),解决了阿拉伯海湾地区石油泄漏位置暴露的问题。我们的工作流程包括虚拟机、数据库和四个模块(信息收集模块、发现展示模块、应用模块和选择模块)。在目标区域的合成孔径雷达(SAR)图像上评估了所提出工作流的充分性。定性和定量分析表明,该算法检测溢油事件的准确率为90.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oil Spill Detection System in the Arabian Gulf Region: An Azure Machine-Learning Approach
Locating oil spills is a crucial portion of an effective marine contamination administration. In this paper, we address the issue of oil spillage location exposure within the Arabian Gulf region, by leveraging a Machine-Learning (ML) workflow on a cloud-based computing platform: Microsoft Azure Machine-Learning Service (Custom Vision). Our workflow comprises of virtual machine, database, and four modules (Information Collection Module, Discovery Show, Application Module, and a Choice Module). The adequacy of the proposed workflow is assessed on Synthetic Aperture Radar (SAR) imagery of the targeted region. Qualitative and quantitative analysis show that the purposed algorithm can detect oil spill occurrence with an accuracy of 90.5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Securing SCADA Systems against Cyber-Attacks using Artificial Intelligence Quality of Life Integrated Framework: Perspective of Cloud Computing Usage Reference Points Generated on Unit Hypersurfaces for MaOEAs Eye-Tracking Analysis with Deep Learning Method An Implementation and Evaluation of Basic Data Storage Topic for Content Provider Stage in Android Programming Learning Assistance System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1