具有不确定性和扰动补偿的四旋翼飞行器自适应神经滑模控制

Mati Ullah, Chunhui Zhao, Hamid Maqsood, Alam Nasir, M. Humayun, Mahmood Ul Hassan, Faiz Alam
{"title":"具有不确定性和扰动补偿的四旋翼飞行器自适应神经滑模控制","authors":"Mati Ullah, Chunhui Zhao, Hamid Maqsood, Alam Nasir, M. Humayun, Mahmood Ul Hassan, Faiz Alam","doi":"10.1109/ICAI55435.2022.9773561","DOIUrl":null,"url":null,"abstract":"This paper addresses the quadrotor vehicle control problem in the presence of parametric uncertainties and exogenous disturbances by introducing a finite-time extended disturbance observer-based adaptive neural sliding mode control (FTEDO-ANSMC) approach. The proposed FTEDO makes the controller robust to exogenous disturbances while eliminating the chattering issue in the control input. The designed SMC utilizes an adaptive neural network to tune its parameters online while a sliding mode concept-based weight update law is employed in the neural network to auto-update its weight parameters instead of conventional error-based weight update law without increasing the computational complexities, thereby enhancing the network's learning speed. The stability of the proposed control strategy is verified via Lyapunov theory. The simulation results of the proposed control strategy and its comparison with the conventional control strategy confirm its validity and efficacy.","PeriodicalId":146842,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence (ICAI)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Neural-Sliding Mode Control of a Quadrotor Vehicle with Uncertainties and Disturbances Compensation\",\"authors\":\"Mati Ullah, Chunhui Zhao, Hamid Maqsood, Alam Nasir, M. Humayun, Mahmood Ul Hassan, Faiz Alam\",\"doi\":\"10.1109/ICAI55435.2022.9773561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the quadrotor vehicle control problem in the presence of parametric uncertainties and exogenous disturbances by introducing a finite-time extended disturbance observer-based adaptive neural sliding mode control (FTEDO-ANSMC) approach. The proposed FTEDO makes the controller robust to exogenous disturbances while eliminating the chattering issue in the control input. The designed SMC utilizes an adaptive neural network to tune its parameters online while a sliding mode concept-based weight update law is employed in the neural network to auto-update its weight parameters instead of conventional error-based weight update law without increasing the computational complexities, thereby enhancing the network's learning speed. The stability of the proposed control strategy is verified via Lyapunov theory. The simulation results of the proposed control strategy and its comparison with the conventional control strategy confirm its validity and efficacy.\",\"PeriodicalId\":146842,\"journal\":{\"name\":\"2022 2nd International Conference on Artificial Intelligence (ICAI)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Artificial Intelligence (ICAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAI55435.2022.9773561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence (ICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAI55435.2022.9773561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文通过引入一种基于有限时间扩展扰动观测器的自适应神经滑模控制(FTEDO-ANSMC)方法,解决了存在参数不确定性和外源干扰的四旋翼飞行器控制问题。提出的FTEDO使控制器对外源干扰具有鲁棒性,同时消除了控制输入中的抖振问题。所设计的SMC利用自适应神经网络在线调整其参数,同时在不增加计算复杂度的情况下,采用基于滑模概念的权值更新律代替传统的基于误差的权值更新律自动更新其权值参数,从而提高了网络的学习速度。通过李亚普诺夫理论验证了所提控制策略的稳定性。仿真结果验证了该控制策略的有效性,并与传统控制策略进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Neural-Sliding Mode Control of a Quadrotor Vehicle with Uncertainties and Disturbances Compensation
This paper addresses the quadrotor vehicle control problem in the presence of parametric uncertainties and exogenous disturbances by introducing a finite-time extended disturbance observer-based adaptive neural sliding mode control (FTEDO-ANSMC) approach. The proposed FTEDO makes the controller robust to exogenous disturbances while eliminating the chattering issue in the control input. The designed SMC utilizes an adaptive neural network to tune its parameters online while a sliding mode concept-based weight update law is employed in the neural network to auto-update its weight parameters instead of conventional error-based weight update law without increasing the computational complexities, thereby enhancing the network's learning speed. The stability of the proposed control strategy is verified via Lyapunov theory. The simulation results of the proposed control strategy and its comparison with the conventional control strategy confirm its validity and efficacy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LSTM-based Model for Forecasting of COVID-19 Vaccines in Pakistan Adaptive Neural-Sliding Mode Control of a Quadrotor Vehicle with Uncertainties and Disturbances Compensation A Force Myography based HMI for Classification of Upper Extremity Gestures Evolving computationally efficient prediction model for Stock Volatility using CGPANN A Review on Different Approaches for Assessing Student Attentiveness in Classroom using Behavioural Elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1