{"title":"元标签:理论与框架","authors":"J. Joubert","doi":"10.3905/jfds.2022.1.098","DOIUrl":null,"url":null,"abstract":"Meta-labeling is a machine learning (ML) layer that sits on top of a base primary strategy to help size positions, filter out false-positive signals, and improve metrics such as the Sharpe ratio and maximum drawdown. This article consolidates the knowledge of several publications into a single work, providing practitioners with a clear framework to support the application of meta-labeling to investment strategies. The relationships between binary classification metrics and strategy performance are explained, alongside answers to many frequently asked questions regarding the technique. The author also deconstructs meta-labeling into three components, using a controlled experiment to show how each component helps to improve strategy metrics and what types of features should be considered in the model specification phase.","PeriodicalId":199045,"journal":{"name":"The Journal of Financial Data Science","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-Labeling: Theory and Framework\",\"authors\":\"J. Joubert\",\"doi\":\"10.3905/jfds.2022.1.098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Meta-labeling is a machine learning (ML) layer that sits on top of a base primary strategy to help size positions, filter out false-positive signals, and improve metrics such as the Sharpe ratio and maximum drawdown. This article consolidates the knowledge of several publications into a single work, providing practitioners with a clear framework to support the application of meta-labeling to investment strategies. The relationships between binary classification metrics and strategy performance are explained, alongside answers to many frequently asked questions regarding the technique. The author also deconstructs meta-labeling into three components, using a controlled experiment to show how each component helps to improve strategy metrics and what types of features should be considered in the model specification phase.\",\"PeriodicalId\":199045,\"journal\":{\"name\":\"The Journal of Financial Data Science\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Financial Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3905/jfds.2022.1.098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Financial Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/jfds.2022.1.098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Meta-labeling is a machine learning (ML) layer that sits on top of a base primary strategy to help size positions, filter out false-positive signals, and improve metrics such as the Sharpe ratio and maximum drawdown. This article consolidates the knowledge of several publications into a single work, providing practitioners with a clear framework to support the application of meta-labeling to investment strategies. The relationships between binary classification metrics and strategy performance are explained, alongside answers to many frequently asked questions regarding the technique. The author also deconstructs meta-labeling into three components, using a controlled experiment to show how each component helps to improve strategy metrics and what types of features should be considered in the model specification phase.