用于Haskell的Hobbits:函数式编程语言的高阶编码库

Edwin M. Westbrook, N. Frisby, Paul Brauner
{"title":"用于Haskell的Hobbits:函数式编程语言的高阶编码库","authors":"Edwin M. Westbrook, N. Frisby, Paul Brauner","doi":"10.1145/2034675.2034681","DOIUrl":null,"url":null,"abstract":"Adequate encodings are a powerful programming tool, which eliminate whole classes of program bugs: they ensure that a program cannot generate ill-formed data, because such data is not part of the representation; and they also ensure that a program is well-defined, meaning that it cannot have different behaviors on different representations of the same piece of data. Unfortunately, it has proven difficult to define adequate encodings of programming languages themselves. Such encodings would be very useful in language processing tools such as interpreters, compilers, model-checking tools, etc., as these systems are often difficult to get correct. The key problem in representing programming languages is in encoding binding constructs; previous approaches have serious limitations in either the operations they allow or the correcness guarantees they make. In this paper, we introduce a new library for Haskell that allows the user to define and use higher-order encodings, a powerful technique for representing bindings. Our library allows straightforward recursion on bindings using pattern-matching, which is not possible in previous approaches. We then demonstrate our library on a medium-sized example, lambda-lifting, showing how our library can be used to make strong correctness guarantees at compile time.","PeriodicalId":188691,"journal":{"name":"ACM SIGPLAN Symposium/Workshop on Haskell","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hobbits for Haskell: a library for higher-order encodings in functional programming languages\",\"authors\":\"Edwin M. Westbrook, N. Frisby, Paul Brauner\",\"doi\":\"10.1145/2034675.2034681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adequate encodings are a powerful programming tool, which eliminate whole classes of program bugs: they ensure that a program cannot generate ill-formed data, because such data is not part of the representation; and they also ensure that a program is well-defined, meaning that it cannot have different behaviors on different representations of the same piece of data. Unfortunately, it has proven difficult to define adequate encodings of programming languages themselves. Such encodings would be very useful in language processing tools such as interpreters, compilers, model-checking tools, etc., as these systems are often difficult to get correct. The key problem in representing programming languages is in encoding binding constructs; previous approaches have serious limitations in either the operations they allow or the correcness guarantees they make. In this paper, we introduce a new library for Haskell that allows the user to define and use higher-order encodings, a powerful technique for representing bindings. Our library allows straightforward recursion on bindings using pattern-matching, which is not possible in previous approaches. We then demonstrate our library on a medium-sized example, lambda-lifting, showing how our library can be used to make strong correctness guarantees at compile time.\",\"PeriodicalId\":188691,\"journal\":{\"name\":\"ACM SIGPLAN Symposium/Workshop on Haskell\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGPLAN Symposium/Workshop on Haskell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2034675.2034681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium/Workshop on Haskell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2034675.2034681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

适当的编码是一种强大的编程工具,它可以消除所有类型的程序错误:它们确保程序不会生成格式错误的数据,因为这些数据不是表示的一部分;它们还确保程序是定义良好的,这意味着它不能对同一块数据的不同表示有不同的行为。不幸的是,事实证明很难为编程语言本身定义足够的编码。这种编码在语言处理工具(如解释器、编译器、模型检查工具等)中非常有用,因为这些系统通常很难得到正确的处理。表示编程语言的关键问题是对绑定结构进行编码;以前的方法在允许的操作或保证的正确性方面都有严重的限制。在本文中,我们为Haskell引入了一个新的库,它允许用户定义和使用高阶编码,这是一种表示绑定的强大技术。我们的库允许使用模式匹配对绑定进行直接递归,这在以前的方法中是不可能的。然后,我们在一个中等大小的例子上演示了我们的库,lambda-lifting,展示了如何使用我们的库在编译时提供强大的正确性保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hobbits for Haskell: a library for higher-order encodings in functional programming languages
Adequate encodings are a powerful programming tool, which eliminate whole classes of program bugs: they ensure that a program cannot generate ill-formed data, because such data is not part of the representation; and they also ensure that a program is well-defined, meaning that it cannot have different behaviors on different representations of the same piece of data. Unfortunately, it has proven difficult to define adequate encodings of programming languages themselves. Such encodings would be very useful in language processing tools such as interpreters, compilers, model-checking tools, etc., as these systems are often difficult to get correct. The key problem in representing programming languages is in encoding binding constructs; previous approaches have serious limitations in either the operations they allow or the correcness guarantees they make. In this paper, we introduce a new library for Haskell that allows the user to define and use higher-order encodings, a powerful technique for representing bindings. Our library allows straightforward recursion on bindings using pattern-matching, which is not possible in previous approaches. We then demonstrate our library on a medium-sized example, lambda-lifting, showing how our library can be used to make strong correctness guarantees at compile time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mio: a high-performance multicore io manager for GHC Understanding idiomatic traversals backwards and forwards An EDSL approach to high performance Haskell programming Causality of optimized Haskell: what is burning our cycles? Splittable pseudorandom number generators using cryptographic hashing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1