基于并行近似基序计数的复杂网络分析

George M. Slota, Kamesh Madduri
{"title":"基于并行近似基序计数的复杂网络分析","authors":"George M. Slota, Kamesh Madduri","doi":"10.1109/IPDPS.2014.50","DOIUrl":null,"url":null,"abstract":"Subgraph counting forms the basis of many complex network analysis metrics, including motif and anti-motif finding, relative graph let frequency distance, and graph let degree distribution agreements. Determining exact subgraph counts is computationally very expensive. In recent work, we present FASCIA, a shared-memory parallel algorithm and implementation for approximate subgraph counting. FASCIA uses a dynamic programming-based approach and is significantly faster than exhaustive enumeration, while generating high-quality approximations of subgraph counts. However, the memory usage of the dynamic programming step prohibits us from applying FASCIA to very large graphs. In this paper, we introduce a distributed-memory parallelization of FASCIA by partitioning the graph and the dynamic programming table. We discuss a new collective communication scheme to make the dynamic programming step memory-efficient. These optimizations enable scaling to much larger networks than before. We also present a simple parallelization strategy for distributed subgraph counting on smaller networks. The new additions let us use subgraph counts as graph signatures for a large network collection, and we analyze this collection using various subgraph count-based graph analytics.","PeriodicalId":309291,"journal":{"name":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Complex Network Analysis Using Parallel Approximate Motif Counting\",\"authors\":\"George M. Slota, Kamesh Madduri\",\"doi\":\"10.1109/IPDPS.2014.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subgraph counting forms the basis of many complex network analysis metrics, including motif and anti-motif finding, relative graph let frequency distance, and graph let degree distribution agreements. Determining exact subgraph counts is computationally very expensive. In recent work, we present FASCIA, a shared-memory parallel algorithm and implementation for approximate subgraph counting. FASCIA uses a dynamic programming-based approach and is significantly faster than exhaustive enumeration, while generating high-quality approximations of subgraph counts. However, the memory usage of the dynamic programming step prohibits us from applying FASCIA to very large graphs. In this paper, we introduce a distributed-memory parallelization of FASCIA by partitioning the graph and the dynamic programming table. We discuss a new collective communication scheme to make the dynamic programming step memory-efficient. These optimizations enable scaling to much larger networks than before. We also present a simple parallelization strategy for distributed subgraph counting on smaller networks. The new additions let us use subgraph counts as graph signatures for a large network collection, and we analyze this collection using various subgraph count-based graph analytics.\",\"PeriodicalId\":309291,\"journal\":{\"name\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2014.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2014.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

子图计数构成了许多复杂网络分析指标的基础,包括基序和反基序发现、相对图let频率距离和图let度分布协议。确定精确的子图计数在计算上是非常昂贵的。在最近的工作中,我们提出了FASCIA,一种用于近似子图计数的共享内存并行算法和实现。FASCIA使用基于动态规划的方法,比穷举枚举要快得多,同时生成子图计数的高质量近似。然而,动态规划步骤的内存使用使我们无法将FASCIA应用于非常大的图形。本文通过图的划分和动态规划表的划分,介绍了FASCIA的分布式内存并行化。我们讨论了一种新的集体通信方案,使动态规划步骤节省内存。这些优化可以扩展到比以前大得多的网络。我们还提出了一种简单的并行化策略,用于较小网络上的分布式子图计数。新添加的功能使我们可以使用子图计数作为大型网络集合的图签名,并且我们使用各种基于子图计数的图分析来分析这个集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Complex Network Analysis Using Parallel Approximate Motif Counting
Subgraph counting forms the basis of many complex network analysis metrics, including motif and anti-motif finding, relative graph let frequency distance, and graph let degree distribution agreements. Determining exact subgraph counts is computationally very expensive. In recent work, we present FASCIA, a shared-memory parallel algorithm and implementation for approximate subgraph counting. FASCIA uses a dynamic programming-based approach and is significantly faster than exhaustive enumeration, while generating high-quality approximations of subgraph counts. However, the memory usage of the dynamic programming step prohibits us from applying FASCIA to very large graphs. In this paper, we introduce a distributed-memory parallelization of FASCIA by partitioning the graph and the dynamic programming table. We discuss a new collective communication scheme to make the dynamic programming step memory-efficient. These optimizations enable scaling to much larger networks than before. We also present a simple parallelization strategy for distributed subgraph counting on smaller networks. The new additions let us use subgraph counts as graph signatures for a large network collection, and we analyze this collection using various subgraph count-based graph analytics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving the Performance of CA-GMRES on Multicores with Multiple GPUs Multi-resource Real-Time Reader/Writer Locks for Multiprocessors Energy-Efficient Time-Division Multiplexed Hybrid-Switched NoC for Heterogeneous Multicore Systems Scaling Irregular Applications through Data Aggregation and Software Multithreading Heterogeneity-Aware Workload Placement and Migration in Distributed Sustainable Datacenters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1