用于高性能软处理器的乱序加载/存储执行的有效方法

Henry Wong, Vaughn Betz, Jonathan Rose
{"title":"用于高性能软处理器的乱序加载/存储执行的有效方法","authors":"Henry Wong, Vaughn Betz, Jonathan Rose","doi":"10.1109/FPT.2013.6718409","DOIUrl":null,"url":null,"abstract":"As FPGAs continue to increase in size, it becomes increasingly feasible and desirable to build higher performance soft processors. Preserving the familiar single-threaded programming model can be done with an out of order processor. The ability to execute memory loads and stores out of order has a large impact on performance, but this is difficult to do because the dependencies between stores and loads are not known until addresses are computed. Out of order memory disambiguation is traditionally done with CAMs in the load queue and store queue, but large CAMs are inefficient on FPGAs. Store Queue Index Prediction (SQIP) and NoSQ propose to replace CAMs with store-load forwarding prediction and load re-execution. We implement four memory disambiguation schemes (in-order, CAM, SQIP, NoSQ) on a Stratix IV FPGA and evaluate the area and delay trade-offs. We find that CAM area and delay degrade quickly with load/store queue size, while SQIP and NoSQ have little degradation with queue size but have area overhead for prediction and predictor training hardware. SQIP and NoSQ use less area than CAMs beyond 32 and 16 load/store queue entries, respectively, and have higher maximum frequency beyond 4 entries.","PeriodicalId":344469,"journal":{"name":"2013 International Conference on Field-Programmable Technology (FPT)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Efficient methods for out-of-order load/store execution for high-performance soft processors\",\"authors\":\"Henry Wong, Vaughn Betz, Jonathan Rose\",\"doi\":\"10.1109/FPT.2013.6718409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As FPGAs continue to increase in size, it becomes increasingly feasible and desirable to build higher performance soft processors. Preserving the familiar single-threaded programming model can be done with an out of order processor. The ability to execute memory loads and stores out of order has a large impact on performance, but this is difficult to do because the dependencies between stores and loads are not known until addresses are computed. Out of order memory disambiguation is traditionally done with CAMs in the load queue and store queue, but large CAMs are inefficient on FPGAs. Store Queue Index Prediction (SQIP) and NoSQ propose to replace CAMs with store-load forwarding prediction and load re-execution. We implement four memory disambiguation schemes (in-order, CAM, SQIP, NoSQ) on a Stratix IV FPGA and evaluate the area and delay trade-offs. We find that CAM area and delay degrade quickly with load/store queue size, while SQIP and NoSQ have little degradation with queue size but have area overhead for prediction and predictor training hardware. SQIP and NoSQ use less area than CAMs beyond 32 and 16 load/store queue entries, respectively, and have higher maximum frequency beyond 4 entries.\",\"PeriodicalId\":344469,\"journal\":{\"name\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2013.6718409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2013.6718409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

随着fpga尺寸的不断增大,构建更高性能的软处理器变得越来越可行和可取。可以使用乱序处理器来保持熟悉的单线程编程模型。不按顺序执行内存负载和存储的能力对性能有很大影响,但这很难做到,因为在计算地址之前,存储和负载之间的依赖关系是未知的。乱序内存消歧传统上是通过加载队列和存储队列中的cam来完成的,但是大型cam在fpga上效率很低。存储队列索引预测(SQIP)和NoSQ提出用存储负载转发预测和负载重执行来取代CAMs。我们在Stratix IV FPGA上实现了四种内存消歧方案(in-order, CAM, SQIP, NoSQ),并评估了面积和延迟权衡。我们发现CAM的面积和延迟随着加载/存储队列的大小而迅速下降,而SQIP和NoSQ随着队列的大小而几乎没有下降,但会增加预测和预测器训练硬件的面积开销。SQIP和NoSQ分别比CAMs使用32和16个加载/存储队列条目更少的面积,并且超过4个条目的最大频率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient methods for out-of-order load/store execution for high-performance soft processors
As FPGAs continue to increase in size, it becomes increasingly feasible and desirable to build higher performance soft processors. Preserving the familiar single-threaded programming model can be done with an out of order processor. The ability to execute memory loads and stores out of order has a large impact on performance, but this is difficult to do because the dependencies between stores and loads are not known until addresses are computed. Out of order memory disambiguation is traditionally done with CAMs in the load queue and store queue, but large CAMs are inefficient on FPGAs. Store Queue Index Prediction (SQIP) and NoSQ propose to replace CAMs with store-load forwarding prediction and load re-execution. We implement four memory disambiguation schemes (in-order, CAM, SQIP, NoSQ) on a Stratix IV FPGA and evaluate the area and delay trade-offs. We find that CAM area and delay degrade quickly with load/store queue size, while SQIP and NoSQ have little degradation with queue size but have area overhead for prediction and predictor training hardware. SQIP and NoSQ use less area than CAMs beyond 32 and 16 load/store queue entries, respectively, and have higher maximum frequency beyond 4 entries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and optimization of heterogeneous tree-based FPGA using 3D technology Mobile GPU shader processor based on non-blocking Coarse Grained Reconfigurable Arrays architecture An FPGA-cluster-accelerated match engine for content-based image retrieval A non-intrusive portable fault injection framework to assess reliability of FPGA-based designs Quantum FPGA architecture design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1