认知无线电网络中时空复用的机会频谱接入

Yi Zhang, Wee Peng Tay, K. H. Li, M. Esseghir, D. Gaïti
{"title":"认知无线电网络中时空复用的机会频谱接入","authors":"Yi Zhang, Wee Peng Tay, K. H. Li, M. Esseghir, D. Gaïti","doi":"10.1109/ICASSP.2016.7472360","DOIUrl":null,"url":null,"abstract":"We formulate and study a multi-user multi-armed bandit (MAB) problem that exploits the temporal-spatial reuse of primary user (PU) channels so that secondary users (SUs) who do not interfere with each other can make use of the same PU channel. We first propose a centralized channel allocation policy that has logarithmic regret, but requires a central processor to solve a NP-complete optimization problem at exponentially increasing time intervals. To avoid the high computation complexity at the central processor and the need for SU synchronization, we propose a heuristic distributed policy that incorporates channel access rank learning in a local procedure at each SU at the cost of a higher regret. We compare the performance of our proposed policies with other distributed policies recently proposed for opportunistic spectrum access. Simulations suggest that our proposed policies significantly outperform the benchmark algorithms when spectrum temporal-spatial reuse is allowed.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"8 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Opportunistic spectrum access with temporal-spatial reuse in cognitive radio networks\",\"authors\":\"Yi Zhang, Wee Peng Tay, K. H. Li, M. Esseghir, D. Gaïti\",\"doi\":\"10.1109/ICASSP.2016.7472360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We formulate and study a multi-user multi-armed bandit (MAB) problem that exploits the temporal-spatial reuse of primary user (PU) channels so that secondary users (SUs) who do not interfere with each other can make use of the same PU channel. We first propose a centralized channel allocation policy that has logarithmic regret, but requires a central processor to solve a NP-complete optimization problem at exponentially increasing time intervals. To avoid the high computation complexity at the central processor and the need for SU synchronization, we propose a heuristic distributed policy that incorporates channel access rank learning in a local procedure at each SU at the cost of a higher regret. We compare the performance of our proposed policies with other distributed policies recently proposed for opportunistic spectrum access. Simulations suggest that our proposed policies significantly outperform the benchmark algorithms when spectrum temporal-spatial reuse is allowed.\",\"PeriodicalId\":165321,\"journal\":{\"name\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"8 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2016.7472360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出并研究了一种多用户多臂盗匪(MAB)问题,该问题利用主用户信道的时空复用性,使互不干扰的辅助用户能够利用同一主用户信道。我们首先提出了一个具有对数遗憾的集中式通道分配策略,但需要一个中央处理器以指数增长的时间间隔解决np完全优化问题。为了避免中央处理器的高计算复杂度和对SU同步的需求,我们提出了一种启发式分布式策略,该策略以较高的遗憾为代价,在每个SU的本地过程中结合通道访问排名学习。我们将我们提出的策略的性能与最近为机会性频谱接入提出的其他分布式策略进行了比较。仿真结果表明,在允许频谱时空复用的情况下,我们提出的策略明显优于基准算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Opportunistic spectrum access with temporal-spatial reuse in cognitive radio networks
We formulate and study a multi-user multi-armed bandit (MAB) problem that exploits the temporal-spatial reuse of primary user (PU) channels so that secondary users (SUs) who do not interfere with each other can make use of the same PU channel. We first propose a centralized channel allocation policy that has logarithmic regret, but requires a central processor to solve a NP-complete optimization problem at exponentially increasing time intervals. To avoid the high computation complexity at the central processor and the need for SU synchronization, we propose a heuristic distributed policy that incorporates channel access rank learning in a local procedure at each SU at the cost of a higher regret. We compare the performance of our proposed policies with other distributed policies recently proposed for opportunistic spectrum access. Simulations suggest that our proposed policies significantly outperform the benchmark algorithms when spectrum temporal-spatial reuse is allowed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-stabilized deep neural network An acoustic keystroke transient canceler for speech communication terminals using a semi-blind adaptive filter model Data sketching for large-scale Kalman filtering Improved decoding of analog modulo block codes for noise mitigation An expectation-maximization eigenvector clustering approach to direction of arrival estimation of multiple speech sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1