帕金森病检测的机器学习技术

Sanjay V, S. P.
{"title":"帕金森病检测的机器学习技术","authors":"Sanjay V, S. P.","doi":"10.1109/STCR55312.2022.10009074","DOIUrl":null,"url":null,"abstract":"A neurological disease is Parkinson's disease. It causes trembling in the hands, trouble walking, losing balance, and coordination. In the high-level stage, there is no access to medical care. Blood test reports, CT scan results, and X-ray reports are not accessible early enough. Early Parkinson’s disease detection is crucial to implement effective treatment. The purpose of the proposed effort was to identify Parkinson’s disease in early prediction using clinical imaging and machine learning technologies. Despite the fact that there are numerous methods for detecting Parkinson’s disease, using MRI scan images still it is a big challenge. In this study, an Adaboost classifier is used with a hybrid PSO algorithm to propose a novel technique for detecting Parkinson’s disease. Adaboost acted as the best classifier among other classifiers. Initially, MRI image best features are extracted and identified by the curvelet transform and principal component analysis. This Ad boost classifier receives optimal features as input. Finally, Adaboost classifieds the MRI images and gave excellent classification accuracy. To evaluate the proposed method three methods metrics namely accuracy, specificity, and sensitivity are used. Based on the results the proposed methods yield greater accuracy than the existing systems.","PeriodicalId":338691,"journal":{"name":"2022 Smart Technologies, Communication and Robotics (STCR)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Learning Techniques for Parkinson's Disease Detection\",\"authors\":\"Sanjay V, S. P.\",\"doi\":\"10.1109/STCR55312.2022.10009074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A neurological disease is Parkinson's disease. It causes trembling in the hands, trouble walking, losing balance, and coordination. In the high-level stage, there is no access to medical care. Blood test reports, CT scan results, and X-ray reports are not accessible early enough. Early Parkinson’s disease detection is crucial to implement effective treatment. The purpose of the proposed effort was to identify Parkinson’s disease in early prediction using clinical imaging and machine learning technologies. Despite the fact that there are numerous methods for detecting Parkinson’s disease, using MRI scan images still it is a big challenge. In this study, an Adaboost classifier is used with a hybrid PSO algorithm to propose a novel technique for detecting Parkinson’s disease. Adaboost acted as the best classifier among other classifiers. Initially, MRI image best features are extracted and identified by the curvelet transform and principal component analysis. This Ad boost classifier receives optimal features as input. Finally, Adaboost classifieds the MRI images and gave excellent classification accuracy. To evaluate the proposed method three methods metrics namely accuracy, specificity, and sensitivity are used. Based on the results the proposed methods yield greater accuracy than the existing systems.\",\"PeriodicalId\":338691,\"journal\":{\"name\":\"2022 Smart Technologies, Communication and Robotics (STCR)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Smart Technologies, Communication and Robotics (STCR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STCR55312.2022.10009074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Smart Technologies, Communication and Robotics (STCR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STCR55312.2022.10009074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

帕金森氏症是一种神经系统疾病。它会导致手部颤抖、行走困难、失去平衡和协调性。在高级别阶段,没有获得医疗保健的机会。血液检查报告、CT扫描结果和x射线报告不能及时获得。早期发现帕金森病是实施有效治疗的关键。这项工作的目的是利用临床成像和机器学习技术在早期预测中识别帕金森病。尽管有很多方法可以检测帕金森氏症,但使用核磁共振成像扫描图像仍然是一个很大的挑战。在本研究中,Adaboost分类器与混合粒子群算法相结合,提出了一种检测帕金森病的新技术。Adaboost是其他分类器中最好的分类器。首先,通过曲线变换和主成分分析提取和识别MRI图像的最佳特征。这个Ad boost分类器接收最优特征作为输入。最后,Adaboost对MRI图像进行分类,并给出了很好的分类精度。为了评估所提出的方法,使用了三种方法,即准确性、特异性和敏感性。结果表明,所提出的方法比现有的系统具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Techniques for Parkinson's Disease Detection
A neurological disease is Parkinson's disease. It causes trembling in the hands, trouble walking, losing balance, and coordination. In the high-level stage, there is no access to medical care. Blood test reports, CT scan results, and X-ray reports are not accessible early enough. Early Parkinson’s disease detection is crucial to implement effective treatment. The purpose of the proposed effort was to identify Parkinson’s disease in early prediction using clinical imaging and machine learning technologies. Despite the fact that there are numerous methods for detecting Parkinson’s disease, using MRI scan images still it is a big challenge. In this study, an Adaboost classifier is used with a hybrid PSO algorithm to propose a novel technique for detecting Parkinson’s disease. Adaboost acted as the best classifier among other classifiers. Initially, MRI image best features are extracted and identified by the curvelet transform and principal component analysis. This Ad boost classifier receives optimal features as input. Finally, Adaboost classifieds the MRI images and gave excellent classification accuracy. To evaluate the proposed method three methods metrics namely accuracy, specificity, and sensitivity are used. Based on the results the proposed methods yield greater accuracy than the existing systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GM-LAMP with Residual Learning Network for Millimetre Wave MIMO Architectures Analysis of Artificial Intelligence based Forecasting Techniques for Renewable Wind Power Generation Millimeter Wave Channel in Urban Micro / Urban Macro Environments: Path Loss Model and its Effect on Channel Capacity Estimating GeoJSON Coordinates using Image Processing to Improve Census Credibility Implementation Techniques for GIFT Block Cypher: A Real-Time Performance Comparison
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1