基于边缘检测技术的交通视频分类

V. Katkar, Siddhant Kulkarni, D. Bhatia
{"title":"基于边缘检测技术的交通视频分类","authors":"V. Katkar, Siddhant Kulkarni, D. Bhatia","doi":"10.1109/ICNTE.2015.7029907","DOIUrl":null,"url":null,"abstract":"Classification of Videos based on their content is becoming more and more essential everyday because of the vast amount of video data becoming available. Various Feature Extraction and data mining techniques can be used to perform Video Classification. This paper uses edge detection techniques such as Object Extraction and Canny Edge Detection (using Sobel, Prewitt and Robert's operator) to extract features from the key frames. After extraction, the features are pre-processed using Discretization, PKIDiscretization, Fuzzification, Binarization, Normalization techniques and analysed using Correlation Feature Selection technique before being used by Naive Bayesian Classifier for training and testing purpose. The experimental results show a high accuracy of classification for a set of traffic surveillance videos can be achieved with the proposed combination.","PeriodicalId":186188,"journal":{"name":"2015 International Conference on Nascent Technologies in the Engineering Field (ICNTE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Traffic Video Classification using edge detection techniques\",\"authors\":\"V. Katkar, Siddhant Kulkarni, D. Bhatia\",\"doi\":\"10.1109/ICNTE.2015.7029907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification of Videos based on their content is becoming more and more essential everyday because of the vast amount of video data becoming available. Various Feature Extraction and data mining techniques can be used to perform Video Classification. This paper uses edge detection techniques such as Object Extraction and Canny Edge Detection (using Sobel, Prewitt and Robert's operator) to extract features from the key frames. After extraction, the features are pre-processed using Discretization, PKIDiscretization, Fuzzification, Binarization, Normalization techniques and analysed using Correlation Feature Selection technique before being used by Naive Bayesian Classifier for training and testing purpose. The experimental results show a high accuracy of classification for a set of traffic surveillance videos can be achieved with the proposed combination.\",\"PeriodicalId\":186188,\"journal\":{\"name\":\"2015 International Conference on Nascent Technologies in the Engineering Field (ICNTE)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Nascent Technologies in the Engineering Field (ICNTE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNTE.2015.7029907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Nascent Technologies in the Engineering Field (ICNTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNTE.2015.7029907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着海量视频数据的出现,基于内容的视频分类变得越来越重要。各种特征提取和数据挖掘技术可用于视频分类。本文使用边缘检测技术,如对象提取和Canny边缘检测(使用Sobel, Prewitt和Robert的算子)从关键帧中提取特征。提取后,使用离散化、pkidiscreization、模糊化、二值化、归一化技术对特征进行预处理,并使用相关特征选择技术进行分析,然后由朴素贝叶斯分类器用于训练和测试目的。实验结果表明,该组合对一组交通监控视频具有较高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Traffic Video Classification using edge detection techniques
Classification of Videos based on their content is becoming more and more essential everyday because of the vast amount of video data becoming available. Various Feature Extraction and data mining techniques can be used to perform Video Classification. This paper uses edge detection techniques such as Object Extraction and Canny Edge Detection (using Sobel, Prewitt and Robert's operator) to extract features from the key frames. After extraction, the features are pre-processed using Discretization, PKIDiscretization, Fuzzification, Binarization, Normalization techniques and analysed using Correlation Feature Selection technique before being used by Naive Bayesian Classifier for training and testing purpose. The experimental results show a high accuracy of classification for a set of traffic surveillance videos can be achieved with the proposed combination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OBESTDD: Ontology Based Expert System for Thyroid Disease Diagnosis Design & development of microcontroller based programmable ramp generator for AC-DC converter for simulating decay power transient in experimental facility for nuclear power plants Investigation of effect of surface failures on inner and outer race of bearing on vibration spectrum Electronic bio-chemistry analyzer for estimation of biochemical constituents of blood Development of prototype for waste heat energy recovery from thermoelectric system at Godrej vikhroli plant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1