具有不同服务需求的多层Web应用程序的性能建模

A. Kattepur, M. Nambiar
{"title":"具有不同服务需求的多层Web应用程序的性能建模","authors":"A. Kattepur, M. Nambiar","doi":"10.1109/IPDPSW.2015.28","DOIUrl":null,"url":null,"abstract":"Multi-tiered transactional web applications are frequently used in enterprise based systems. Due to their inherent distributed nature, pre-deployment testing for high-availability and varying concurrency are important for post-deployment performance. Accurate performance modeling of such applications can help estimate values for future deployment variations as well as validate experimental results. In order to theoretically model performance of multi-tiered applications, we use queuing networks and Mean Value Analysis (MVA) models. While MVA has been shown to work well with closed queuing networks, there are particular limitations in cases where the service demands vary with concurrency. This is further contrived by the use of multi-server queues in multi-core CPUs, that are not traditionally captured in MVA. We compare performance of a multi-server MVA model alongside actual performance testing measurements and demonstrate this deviation. Using spline interpolation of collected service demands, we show that a modified version of the MVA algorithm (called MVASD) that accepts an array of service demands, can provide superior estimates of maximum throughput and response time. Results are demonstrated over multi-tier vehicle insurance registration and e-commerce web applications. The mean deviations of predicted throughput and response time are shown to be less the 3% and 9%, respectively. Additionally, we analyze the effect of spline interpolation of service demands as a function of throughput on the prediction results.","PeriodicalId":340697,"journal":{"name":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Performance Modeling of Multi-tiered Web Applications with Varying Service Demands\",\"authors\":\"A. Kattepur, M. Nambiar\",\"doi\":\"10.1109/IPDPSW.2015.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-tiered transactional web applications are frequently used in enterprise based systems. Due to their inherent distributed nature, pre-deployment testing for high-availability and varying concurrency are important for post-deployment performance. Accurate performance modeling of such applications can help estimate values for future deployment variations as well as validate experimental results. In order to theoretically model performance of multi-tiered applications, we use queuing networks and Mean Value Analysis (MVA) models. While MVA has been shown to work well with closed queuing networks, there are particular limitations in cases where the service demands vary with concurrency. This is further contrived by the use of multi-server queues in multi-core CPUs, that are not traditionally captured in MVA. We compare performance of a multi-server MVA model alongside actual performance testing measurements and demonstrate this deviation. Using spline interpolation of collected service demands, we show that a modified version of the MVA algorithm (called MVASD) that accepts an array of service demands, can provide superior estimates of maximum throughput and response time. Results are demonstrated over multi-tier vehicle insurance registration and e-commerce web applications. The mean deviations of predicted throughput and response time are shown to be less the 3% and 9%, respectively. Additionally, we analyze the effect of spline interpolation of service demands as a function of throughput on the prediction results.\",\"PeriodicalId\":340697,\"journal\":{\"name\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2015.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2015.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

多层事务性web应用程序经常用于基于企业的系统。由于其固有的分布式特性,高可用性和可变并发性的部署前测试对于部署后性能非常重要。对这些应用程序进行准确的性能建模可以帮助估计未来部署变化的值,并验证实验结果。为了从理论上模拟多层应用程序的性能,我们使用排队网络和均值分析(MVA)模型。虽然MVA已被证明可以很好地用于封闭排队网络,但在服务需求随并发性变化的情况下,它有特殊的局限性。通过在多核cpu中使用多服务器队列进一步实现了这一点,而传统上MVA不会捕获这些队列。我们将多服务器MVA模型的性能与实际性能测试结果进行比较,并演示这种偏差。使用收集到的服务需求的样条插值,我们展示了MVA算法(称为MVASD)的修改版本,它接受一系列服务需求,可以提供更好的最大吞吐量和响应时间估计。结果通过多层车辆保险登记和电子商务web应用程序进行了演示。预测吞吐量和响应时间的平均偏差分别小于3%和9%。此外,我们还分析了服务需求作为吞吐量函数的样条插值对预测结果的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Modeling of Multi-tiered Web Applications with Varying Service Demands
Multi-tiered transactional web applications are frequently used in enterprise based systems. Due to their inherent distributed nature, pre-deployment testing for high-availability and varying concurrency are important for post-deployment performance. Accurate performance modeling of such applications can help estimate values for future deployment variations as well as validate experimental results. In order to theoretically model performance of multi-tiered applications, we use queuing networks and Mean Value Analysis (MVA) models. While MVA has been shown to work well with closed queuing networks, there are particular limitations in cases where the service demands vary with concurrency. This is further contrived by the use of multi-server queues in multi-core CPUs, that are not traditionally captured in MVA. We compare performance of a multi-server MVA model alongside actual performance testing measurements and demonstrate this deviation. Using spline interpolation of collected service demands, we show that a modified version of the MVA algorithm (called MVASD) that accepts an array of service demands, can provide superior estimates of maximum throughput and response time. Results are demonstrated over multi-tier vehicle insurance registration and e-commerce web applications. The mean deviations of predicted throughput and response time are shown to be less the 3% and 9%, respectively. Additionally, we analyze the effect of spline interpolation of service demands as a function of throughput on the prediction results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating Large-Scale Single-Source Shortest Path on FPGA Relocation-Aware Floorplanning for Partially-Reconfigurable FPGA-Based Systems iWAPT Introduction and Committees Computing the Pseudo-Inverse of a Graph's Laplacian Using GPUs Optimizing Defensive Investments in Energy-Based Cyber-Physical Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1