基于双边滤波的三维网格兴趣点提取

Han Guo, Xiangyu Kong, Dongmei Niu, Xiuyang Zhao
{"title":"基于双边滤波的三维网格兴趣点提取","authors":"Han Guo, Xiangyu Kong, Dongmei Niu, Xiuyang Zhao","doi":"10.1109/ICVRV.2017.00102","DOIUrl":null,"url":null,"abstract":"Interest points are significant to 3D matching, recognition and 3D retrieval. We use bilateral filtering to extract 3D interest points. Differing from prior work, a novel approach is proposed to select the local neighborhood which is named trust area. And we also use multi-scale DoG to compute the saliency of the vertices. The interest points are extracted by saliency.","PeriodicalId":187934,"journal":{"name":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extraction of Interest Points on 3D Meshes Based on Bilateral Filtering\",\"authors\":\"Han Guo, Xiangyu Kong, Dongmei Niu, Xiuyang Zhao\",\"doi\":\"10.1109/ICVRV.2017.00102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interest points are significant to 3D matching, recognition and 3D retrieval. We use bilateral filtering to extract 3D interest points. Differing from prior work, a novel approach is proposed to select the local neighborhood which is named trust area. And we also use multi-scale DoG to compute the saliency of the vertices. The interest points are extracted by saliency.\",\"PeriodicalId\":187934,\"journal\":{\"name\":\"2017 International Conference on Virtual Reality and Visualization (ICVRV)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Virtual Reality and Visualization (ICVRV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVRV.2017.00102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2017.00102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

兴趣点对三维匹配、识别和三维检索具有重要意义。我们使用双边滤波来提取3D兴趣点。与以往的研究不同,本文提出了一种新的方法来选择局部邻域,即信任区域。我们还使用多尺度DoG来计算顶点的显著性。通过显著性提取兴趣点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extraction of Interest Points on 3D Meshes Based on Bilateral Filtering
Interest points are significant to 3D matching, recognition and 3D retrieval. We use bilateral filtering to extract 3D interest points. Differing from prior work, a novel approach is proposed to select the local neighborhood which is named trust area. And we also use multi-scale DoG to compute the saliency of the vertices. The interest points are extracted by saliency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Feature-Enhanced Surfaces from Incomplete Point Cloud with Segmentation and Curve Skeleton Information Efficiently Disassemble-and-Pack for Mechanism Surface Flattening Based on Energy Fabric Deformation Model in Garment Design A Novel Intelligent Thyroid Nodule Diagnosis System over Ultrasound Images Based on Deep Learning A Novel Reconstruction Method of 3D Heart Geometry Atlas Based on Visible Human
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1