IoHT任务依赖优化中提高服务质量的改进方法

R. Doewes, Preeti Saini
{"title":"IoHT任务依赖优化中提高服务质量的改进方法","authors":"R. Doewes, Preeti Saini","doi":"10.54216/jcim.120202","DOIUrl":null,"url":null,"abstract":"Keeping a proper level of task dependency throughout the scheduling process is critical to achieving the aim of decreasing the make-span rate in Internet of Health Things (IoHT) projects. We provide a smart model strategy for effective task scheduling in the IoHT environment for e-healthcare systems by merging hybrid moth flame optimisation (HMFO) with cloud computing. The HMFO algorithm guarantees that all available resources are distributed evenly, resulting in improved quality of service (QoS). We study the Google cluster dataset to learn about the scheduling behaviours of cloud-based jobs in order to train our model. After training, an HMFO model may be used to plan activities in real time. To assess the success of our strategy, we run simulations in the CloudSim environment, taking into account crucial parameters such as resource utilisation, reaction time, and energy consumption. According to a comparative analysis, our hybrid HMFO system surpasses the alternatives in terms of reaction time, average run duration, and cost savings. Our method has proven to be effective due to the favourable effects it has had on response rates, prices, and run times. Combining IoT and cloud computing has the potential to improve healthcare delivery in a variety of ways. One unique strategy we offer for scheduling IOHT jobs is to combine a deep neural network (DNN) algorithm with the MFO technique. Job scheduling in electronic healthcare systems can be optimised with the help of our hybrid MFO-DNN algorithm by taking into account a variety of different objectives, the most important of which are lowering response times while improving resource utilisation and maintaining consistent load balances. The MFO approach searches the search space and provides early solutions, while the DNN algorithm refines and improves those first findings. In comprehensive simulations conducted in a real-world hospital setting, the hybrid MFO-DNN technique outperformed existing scheduling algorithms in terms of reaction time, resource utilisation, and load balancing. The simulated healthcare environments were as true to life as was feasible. The suggested technique has been demonstrated to be both dependable and scalable, making it appropriate for use in large-scale IOHT deployments. This study considerably enhances the state of the art in IOHT task scheduling in E healthcare systems by developing a hybrid optimisation technique that takes advantage of the strengths of both MFO and DNN. The findings indicate that this strategy has the potential to improve the quality and efficiency of healthcare delivery, which helps patients receive care that is both effective and timely.","PeriodicalId":169383,"journal":{"name":"Journal of Cybersecurity and Information Management","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Method for Enhanced Quality of Service in IoHT Task Dependency Optimization\",\"authors\":\"R. Doewes, Preeti Saini\",\"doi\":\"10.54216/jcim.120202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Keeping a proper level of task dependency throughout the scheduling process is critical to achieving the aim of decreasing the make-span rate in Internet of Health Things (IoHT) projects. We provide a smart model strategy for effective task scheduling in the IoHT environment for e-healthcare systems by merging hybrid moth flame optimisation (HMFO) with cloud computing. The HMFO algorithm guarantees that all available resources are distributed evenly, resulting in improved quality of service (QoS). We study the Google cluster dataset to learn about the scheduling behaviours of cloud-based jobs in order to train our model. After training, an HMFO model may be used to plan activities in real time. To assess the success of our strategy, we run simulations in the CloudSim environment, taking into account crucial parameters such as resource utilisation, reaction time, and energy consumption. According to a comparative analysis, our hybrid HMFO system surpasses the alternatives in terms of reaction time, average run duration, and cost savings. Our method has proven to be effective due to the favourable effects it has had on response rates, prices, and run times. Combining IoT and cloud computing has the potential to improve healthcare delivery in a variety of ways. One unique strategy we offer for scheduling IOHT jobs is to combine a deep neural network (DNN) algorithm with the MFO technique. Job scheduling in electronic healthcare systems can be optimised with the help of our hybrid MFO-DNN algorithm by taking into account a variety of different objectives, the most important of which are lowering response times while improving resource utilisation and maintaining consistent load balances. The MFO approach searches the search space and provides early solutions, while the DNN algorithm refines and improves those first findings. In comprehensive simulations conducted in a real-world hospital setting, the hybrid MFO-DNN technique outperformed existing scheduling algorithms in terms of reaction time, resource utilisation, and load balancing. The simulated healthcare environments were as true to life as was feasible. The suggested technique has been demonstrated to be both dependable and scalable, making it appropriate for use in large-scale IOHT deployments. This study considerably enhances the state of the art in IOHT task scheduling in E healthcare systems by developing a hybrid optimisation technique that takes advantage of the strengths of both MFO and DNN. The findings indicate that this strategy has the potential to improve the quality and efficiency of healthcare delivery, which helps patients receive care that is both effective and timely.\",\"PeriodicalId\":169383,\"journal\":{\"name\":\"Journal of Cybersecurity and Information Management\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cybersecurity and Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/jcim.120202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cybersecurity and Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/jcim.120202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在整个调度过程中保持适当的任务依赖关系是实现降低健康物联网(IoHT)项目制造周期率目标的关键。我们通过将混合飞蛾火焰优化(HMFO)与云计算相结合,为电子医疗系统的IoHT环境中有效的任务调度提供了一种智能模型策略。该算法保证了所有可用资源的均匀分布,从而提高了服务质量(QoS)。我们研究了Google集群数据集,以了解基于云的作业的调度行为,以训练我们的模型。训练后,HMFO模型可用于实时规划活动。为了评估我们的策略是否成功,我们在CloudSim环境中运行模拟,考虑到资源利用率、反应时间和能耗等关键参数。根据对比分析,我们的混合HMFO系统在反应时间、平均运行时间和成本节约方面优于其他替代系统。我们的方法已被证明是有效的,因为它对响应率、价格和运行时间产生了有利的影响。物联网和云计算的结合有可能以各种方式改善医疗保健服务。我们为调度IOHT作业提供的一个独特策略是将深度神经网络(DNN)算法与MFO技术相结合。在我们的混合MFO-DNN算法的帮助下,通过考虑各种不同的目标,可以优化电子医疗保健系统中的作业调度,其中最重要的是降低响应时间,同时提高资源利用率和保持一致的负载平衡。MFO方法搜索搜索空间并提供早期的解决方案,而DNN算法则对这些最初的发现进行细化和改进。在真实的医院环境中进行的综合模拟中,混合MFO-DNN技术在反应时间、资源利用率和负载平衡方面优于现有的调度算法。模拟的医疗保健环境尽可能逼真。所建议的技术已被证明既可靠又可扩展,因此适合用于大规模IOHT部署。本研究通过开发一种利用MFO和DNN优势的混合优化技术,大大提高了电子医疗系统中IOHT任务调度的最新水平。研究结果表明,该策略有可能提高医疗保健服务的质量和效率,从而帮助患者获得有效和及时的护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved Method for Enhanced Quality of Service in IoHT Task Dependency Optimization
Keeping a proper level of task dependency throughout the scheduling process is critical to achieving the aim of decreasing the make-span rate in Internet of Health Things (IoHT) projects. We provide a smart model strategy for effective task scheduling in the IoHT environment for e-healthcare systems by merging hybrid moth flame optimisation (HMFO) with cloud computing. The HMFO algorithm guarantees that all available resources are distributed evenly, resulting in improved quality of service (QoS). We study the Google cluster dataset to learn about the scheduling behaviours of cloud-based jobs in order to train our model. After training, an HMFO model may be used to plan activities in real time. To assess the success of our strategy, we run simulations in the CloudSim environment, taking into account crucial parameters such as resource utilisation, reaction time, and energy consumption. According to a comparative analysis, our hybrid HMFO system surpasses the alternatives in terms of reaction time, average run duration, and cost savings. Our method has proven to be effective due to the favourable effects it has had on response rates, prices, and run times. Combining IoT and cloud computing has the potential to improve healthcare delivery in a variety of ways. One unique strategy we offer for scheduling IOHT jobs is to combine a deep neural network (DNN) algorithm with the MFO technique. Job scheduling in electronic healthcare systems can be optimised with the help of our hybrid MFO-DNN algorithm by taking into account a variety of different objectives, the most important of which are lowering response times while improving resource utilisation and maintaining consistent load balances. The MFO approach searches the search space and provides early solutions, while the DNN algorithm refines and improves those first findings. In comprehensive simulations conducted in a real-world hospital setting, the hybrid MFO-DNN technique outperformed existing scheduling algorithms in terms of reaction time, resource utilisation, and load balancing. The simulated healthcare environments were as true to life as was feasible. The suggested technique has been demonstrated to be both dependable and scalable, making it appropriate for use in large-scale IOHT deployments. This study considerably enhances the state of the art in IOHT task scheduling in E healthcare systems by developing a hybrid optimisation technique that takes advantage of the strengths of both MFO and DNN. The findings indicate that this strategy has the potential to improve the quality and efficiency of healthcare delivery, which helps patients receive care that is both effective and timely.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
A Systematic Review of Privacy Preserving Healthcare Data Sharing on Blockchain Design, development and performance estimation of 110 kW kinetic heating simulation facilities for material studies–Phase I Impact of Cyber Attack on Saudi Aramco Image Classification Based On CNN: A Survey An Artificial Intelligence-based Intrusion Detection System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1