Gregory M. Striemer, Harsha Krovi, A. Akoglu, B. Vincent, Benjamin Hopson, J. Frelinger, Adam Buntzman
{"title":"基于gpu的DNA重组算法克服TCR-beta库建模的局限性","authors":"Gregory M. Striemer, Harsha Krovi, A. Akoglu, B. Vincent, Benjamin Hopson, J. Frelinger, Adam Buntzman","doi":"10.1109/IPDPS.2014.34","DOIUrl":null,"url":null,"abstract":"The DNA recombination process known as V(D)J recombination is the central mechanism for generating diversity among antigen receptors such as T-cell receptors (TCRs). This diversity is crucial for the development of the adaptive immune system. However, modeling of all the α β TCR sequences is encumbered by the enormity of the potential repertoire, which has been predicted to exceed 1015 sequences. Prior modeling efforts have, therefore, been limited to extrapolations based on the analysis of minor subsets of the overall TCRbeta repertoire. In this study, we map the recombination process completely onto the graphics processing unit (GPU) hardware architecture using the CUDA programming environment to circumvent prior limitations. For the first time, we present a model of the mouse TCRbeta repertoire to an extent which enabled us to evaluate the Convergent Recombination Hypothesis (CRH) comprehensively at peta-scale level on a single GPU.","PeriodicalId":309291,"journal":{"name":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Overcoming the Limitations Posed by TCR-beta Repertoire Modeling through a GPU-Based In-Silico DNA Recombination Algorithm\",\"authors\":\"Gregory M. Striemer, Harsha Krovi, A. Akoglu, B. Vincent, Benjamin Hopson, J. Frelinger, Adam Buntzman\",\"doi\":\"10.1109/IPDPS.2014.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The DNA recombination process known as V(D)J recombination is the central mechanism for generating diversity among antigen receptors such as T-cell receptors (TCRs). This diversity is crucial for the development of the adaptive immune system. However, modeling of all the α β TCR sequences is encumbered by the enormity of the potential repertoire, which has been predicted to exceed 1015 sequences. Prior modeling efforts have, therefore, been limited to extrapolations based on the analysis of minor subsets of the overall TCRbeta repertoire. In this study, we map the recombination process completely onto the graphics processing unit (GPU) hardware architecture using the CUDA programming environment to circumvent prior limitations. For the first time, we present a model of the mouse TCRbeta repertoire to an extent which enabled us to evaluate the Convergent Recombination Hypothesis (CRH) comprehensively at peta-scale level on a single GPU.\",\"PeriodicalId\":309291,\"journal\":{\"name\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2014.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2014.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Overcoming the Limitations Posed by TCR-beta Repertoire Modeling through a GPU-Based In-Silico DNA Recombination Algorithm
The DNA recombination process known as V(D)J recombination is the central mechanism for generating diversity among antigen receptors such as T-cell receptors (TCRs). This diversity is crucial for the development of the adaptive immune system. However, modeling of all the α β TCR sequences is encumbered by the enormity of the potential repertoire, which has been predicted to exceed 1015 sequences. Prior modeling efforts have, therefore, been limited to extrapolations based on the analysis of minor subsets of the overall TCRbeta repertoire. In this study, we map the recombination process completely onto the graphics processing unit (GPU) hardware architecture using the CUDA programming environment to circumvent prior limitations. For the first time, we present a model of the mouse TCRbeta repertoire to an extent which enabled us to evaluate the Convergent Recombination Hypothesis (CRH) comprehensively at peta-scale level on a single GPU.